
-197-

DEC-10-AMZC-D

MACRO-10 ASSEMBLER
PROGRAMMER'S REFERENCE MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS



MACRO -198-
1st Edition April 1967
2nd Printing October 1967
3rd Edition (Rev) August 1968

(Rev) June 196 9

(Rev) October 1969
(Rev) August 1970
(Rev) April 1972

4th Edition
5th Edition
6th Edition
7th Edition

Copyright (cT) 1967, 1968, 1969, 1970, 1971, 1972 by
Digital Equipment Corporation

The material in this manual is for information
purposes and is subject to change without notice

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC

FLIP CHIP

DIGITAL

PDP

FOCAL

COMPUTER LAB



-199-

CONTENTS

MACRO

CHAPTER 1

1 .1

1 .2

1 .2 .1

1 •2 .2

1 .3

1 .4

1 .5

1 .5 .1

1 .5 .2

1 .5,.3

1,.5,.4

1,.5,.5

1,.5,.6

1,.5,.7

1..5..8

1..6

1..6..1

1..6.,2

1..7

1.,7.,1

1.,7.,2

1.,7.,3

1.,8

1. 8. 1

1. 8. 2

1. 8. 3

1. 8. 4

1. 8. 5

1. 8. 6

1. 8. 7

1. 9

1. 9. 1

1. 9. 2

1. 9. 3

1. 10

INTRODUCTION

MACRO- 10 LANGUAGE - STATEMENTS

INSTRUCTION WORD FORMATS

Primary Instruction Format

Input/Output Instruction Format

COMMUNICATION WITH MONITORS

OPERATING PROCEDURES

MACRO STATEMENTS

Symbols

Labels

Symbolic Addresses

Operators

Symbolic Operators

Operands

Symbolic Operands

Comments

STATEMENT PROCESSING

Order of Statement Evaluation

Order of Expression Evaluation

USER-DEFINED SYMBOLS

Direct Assignment Statements

Local and Global Symbols

Deleted Symbols

NUMBERS

Arithmetic and Logical Operations

Evaluating Expressions

Numeric Terms

Binary Shifting

Left Arrow Shifting

Floating Point Decimal Numbers

Fixed Point Decimal Numbers

ADDRESS ASSIGNMENTS

Setting and Referencing the Location
Counter

Indirect Addressing

Indexing

LITERALS

205

206

206

207

208

209

209

209

209

210

210

211

211

212

212

213

213

214

214

215

215

216

217

218

219

219

220

221

222

222

222

223

224

224

224

225

Version 47 June 1972

iii



MACRO -200-

CHAPTER 2 MACRO-10 ASSEMBLER
STATEMENTS - PSEUDO-OPS 227

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE 227

2.1.1 Relocation Before Execution - PHASE 229
and DEPHASE Statements

2.2 NAMING PROGRAMS 230

2.2.1 Program Subtitles 231

2.3 PROGRAM ORIGIN 231

2.3.1 HISEG Statements - The HISEG Pseudo-Op 232
Statement

2.3.2 TWOSEG Statements 232

2.4 ENTERING DATA 233

2.4.1 RADIX Statements 233

2.4.2 Entering Data Under the Prevailing Radix 234

2.4.3 DEC and OCT Statements 234

2.4.4 Changing the Local Radix for a Single 235
Numeric Term

2.4.5 RADIX- 50 Statement 236

2.4.6 EXP Statement 236

2.4.7 Z Statement 236

2.5 INPUT DATA WORD FORMATTING 236

2.5.1 BYTE Statement 236

2.5.2 POINT Statement - Handling Bytes 237

2.5.3 IOWD Statement: Formatting I/O 239
Transfer Words

2.5.4 XWD Statement: Entering Two Half-Words 239
of Data

2.5.5 Text Input 240

2.5.5.1 ASCII, ASCIZ, and SIXBIT Statement 240

2.5.6 Reserving Storage 241

2.5.6.1 Reserving a Single Location 242

2.5.7 VAR Statements 243

2.5.8 BLOCK Statements 243

2.5.9 END Statements 243

2.5.10 LIT Statements 244

2.5.11 Multi-Program Assembly 244

2.5.12 PASS2 Statements 245

2.5.13 PURGE Statements 245

2.5.14 XPUNGE Statements 245

2.5.15 Linking Subroutines 246

2.5.15.1 EXTERN Statements 246

2.5.15.2 INTERN Statements 247

2.5.15.3 ENTRY Statements 247

Version 47 June 1972



201- MACRO

2.6

2.6.1

2.6.2

2.6.3

2.7

2.8

2.8.1

2.8.2

2.8.3

2.8.4

2.9

2.9.1

2.9.2

CHAPTER 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.8.1

CHAPTER 4

4.1

4.2

4.2.1

4.2.2

CHAPTER 5

CHAPTER 6

6.1

6.2

6.2.1

SUPPRESSION OF SYMBOLS

SUPPRESS SYMBOL Statement

ASUPPRESS Statement

Listing Control Statements

CONDITIONAL ASSEMBLY

ASSEMBLER CONTROL STATEMENTS

REPEAT Statements

OPDEF Statements

SYN Statements

Extended Instruction Statements

MULTI-FILE ASSEMBLY

UNIVERSAL Name

SEARCH Name

MACROS

DEFINITION OF MACROS

MACRO CALLS

MACRO FORMAT

CREATED SYMBOLS

CONCATENATION

DEFAULT ARGUMENTS

INDEFINITE REPEAT

NESTING AND REDEFINITION

ASCII Interpretation

ERROR DETECTION

SINGLE-LETTER ERROR CODES

ERROR MESSAGES

LOOKUP Errors

MACRO I/O Error Messages

RELOCATION

ASSEMBLY OUTPUT

ASSEMBLY LISTING

BINARY PROGRAM OUTPUT

Relocatable Binary Programs - LINK
Format

248

248

248

249

252

253

253

254

255

256

257

257

258

259

259

260

261

262

263

264

265

266

268

269

269

275

277

278

279

283

283

284

284

Version 47 June 1972



IWCRO -202-

6. 2 i 1.1 LINK Formats for the Block Types

6.2.2 Absolute Binary Programs

6.2.2.1 RIM10B Format

6.2.2.2 RIM10 Format

6.2.2.3 RIM Format

6.2.2.4 END Statements

285

288

288

289

290

290

CHAPTER 7 PROGRAMMING EXAMPLES 293

APPENDIX A

A.l

A.

2

OP CODES, PSEUDO-OPS,
AND MONITOR I/O COMMANDS

ASSEMBLER PSEUDO-OPS AND MONITOR CO
COMMANDS

MACHINE MNEMONICS AND OCTAL CODES

307

307

309

APPENDIX B SUMMARY OF PSEUDO-OPS

B.l PSEUDO-OPS

B.l.l Conditional Assembly Statements

311

311

313

APPENDIX C SUMMARY OF CHARACTER INTERPRETATIONS 315

APPENDIX D STORAGE ALLOCATION 319

APPENDIX E TEXT CODES 323

APPENDIX F RADIX 50 REPRESENTATION 325

APPENDIX G

G.l

G.2

G.2,

G.2

G.2

G.2

G.2.

5

G.2.

6

G.2.

7

G.3

SUMMARY OF RULES FOR
DEFINING AND CALLING MACROS

ASSEMBLER INTERPRETATION

CHARACTER HANDLING

Blanks

Brackets

Parentheses

Commas

Semicolons

Carriage Return

Back-Slash

CONCATENATION

327

327

327

327

327

328

328

328

328

328

328

Version 47 June 1972



-203^ MACRO

APPENDIX H OPERATING INSTRUCTIONS 331

H .

1

REQUIREMENTS 331

H.2 INITIALIZATION 331

H.3 COMMANDS 332

H.3.1 General Command Format 332

H.3.

2

Disk File Command Format 332

H.4 SWITCHES 334

Version 47 June 1972
vii





-205- MACRO

Chapter 1

Introduction

MACRO-10 is the symbolic assembly program for the PDP-10, and oper-
ates in a minimum of 7K pure plus IK impure core memory in all

PDP-10 systems. MACRO-10 is a two-pass assembler. It is completely
device independent, allowing the user to select standard peripheral
devices for input and output files. For example, a terminal can be used
for input of the symbolic source program, DECtape for output of the
assembled binary object program, and a line printer can be used to
output the program listing.

This assembler performs many useful functions, making machine
language programming easier, faster, and more efficient. Basically,
the assembler processes the PDP-10 programmer's source program
statements by translating mnemonic operation codes to the binary
codes needed in machine instructions, relating symbols to numeric
values, assigning relocatable or absolute core addresses for pro-
gram instructions and data, and preparing an output listing of the
program which includes notification of any errors detected during
the assembly process.

MACRO-10 also contains powerful macro capabilities which allow the
programmer to create new language elements, thus expanding and

Version 47 j UNE 1972

1-1



MACRO -206-

adapting the assembler to perform specialized functions for each

programming job.

1.1 MACRO- 10 LANGUAGE - STATEMENTS

MACRO-10 programs are usually prepared on a terminal, with the aid

of a text editing program, as a sequence of statements. Each state-

ment is normally written on a single line and terminated by a car-

riage return-line feed sequence. MACRO-10 statements are virtually

format free; that is, elements of a statement are not placed in

numbered columns with rigidly controlled spacing between elements,

as in punched-card oriented assemblers.

There are four types of elements in a MACRO-10 statement which are

separated by specific characters. These elements are identified

by the order of appearance in the statement, and by the separating,

or delimiting, character which follows or precedes the elements.

Statements are written in the general form:

label: operator operand, operand,•comments (carriage return-line feed)

The assembler converts statements written in the foregoing form

and translates them into machine instruction words. The formats

used by the machine instructions are described in the following

paragraphs

.

1.2 INSTRUCTION WORD FORMATS

There are two types of machine instruction word formats: primary

and input/output.

The PDP-10 machine instructions are fully described in the PDP-10

System Reference Manual and listed alphabetically in Appendix A of

this manual. Monitor I/O commands, or programmed operators have

the same formats. (See monitor manuals.)

The primary instruction statements may have two operands: (1) an

accumulator address and (2) a memory address. A memory address

may be modified by indexing and indirect addressing.

Version 47 June 1972

1-2



-207- MACRO

1.2.1 Primary Instruction Format

After processing primary instruction statements, the assembler

produces machine instructions in the general 36-bit word format

shown below:

8 9 12 13 14 17 18 35

1 1 1111
1 6. 1 .0

ACCUMULATOR

in general/ the mnemonic. operation code, or operator, in the sym-

bolic statement is translated to its binary equivalent and placed

in bits 0-8 of the machine instruction. The address operand is

evaluated and placed in the address part (bits 18-35 of the machine

instruction. The assembler assigns sequential binary addresses to

each statement as it. is processed by means of the location counter.

Labels are given the current value of the location counter and are

stored in the assembler's symbol table, where the corresponding

binary addresses can be found if another instruction uses the same

symbol as an address reference.

Any one of 16 possible accumulators may be specified in an instruc-

tion by identifying them symbolically dr numerically as operands

in the statement followed by a comma. The indirect address bit is

set to 1 when the character @ prefixes a memory reference. Index-

ing is specified by writing the index register used in parentheses

immediately following the memory reference. (All PDP-10 accumula-

tors, except accumulator 0, may be used as index registers.) Actu-

ally, expressions enclosed in parentheses, (in the index register

position) are evaluated as 36-bit quantities; their halves are ex-

changed, and then each half is added into the corresponding half

of the binary word being assembled. For example, the statements

MOVSI AC, (1.0) ;M0VE 1.0 TO AC,}

MOVSI AC,(SIXBIT /DSK/)

are equivalent to

MOVSI AC, 201400
MOVSI AC, 446353

;M0VE 1.0 TO AC^

Version 47 June 1972

1-3



MACRO -208-

To illustrate this general view of assembler processing, here is a

typical symbolic instruction. Assume that AC17, TEMP and XR are

defined symbols, with values of 17, 100, and 3, respectively.

LABEL: ADD AC17 ,@TEMP(XR) ; STATEMENT EXAMPLE}

This is processed by the assembler and stored as a binary machine

instruction like this:

ACCUMULATOR

The mnemonic instruction code, ADD, has been translated to its octal

equivalent, 270, and stored in bits 0-8. The first operand specifies

accumulator 17 . The effective memory address will be found at exe-
cs

cution time by adding the contents of index register 3 to the value

of TEMP, then taking this value as the address of the word whose

address points to the word to be added to AC17.

A comment following a semicolon does not affect the program in any

way, but it is printed in the output listing.

1.2.2 Input/Output Instruction Format

There are eight PDP-10 I/O statements; in each statement the first

operand is either a peripheral device number or a device mnemonic

(see PDP-10 System Reference Manual for complete list) . The second

operand is a memory address. For example,

READ: DATAI PTR, @NUM( 4 )

}

requests that data be read in from a paper- tape reader, to be stored

at the indirect, indexed, address given.

The format for I/O instruction words is shown below:

2 3 9 to 12 U 14 17 18 35

1, ,

.

_ !

-A/.
-v v y-

INOIRECT

I

BIT
|

INSTRUCTION

Version 47
1-4

June 1972



-209- MACRO
1.3 COMMUNICATION WITH MONITORS

Programs assembled with MACRO-10 which operate under executive con-
trol of a monitor must use monitor facilities for device independent
I/O services. This is done by means of programmed operators (opera-
tion codes 040 through 077) such as CALL. INIT, LOOKUP, IN, OUT,
and CLOSE.

Additional monitor commands are available to allow the user program
to exercise control over central processor trapping, to modify its
memory allocation, and other services, which are described in the
monitor programmer's manuals.

Monitor commands are listed in Appendix A.

1.4 OPERATING PROCEDURES

Commands for loading and executing MACRO-10 are contained in Appen-
dix H.

1.5 MACRO STATEMENTS

As previously stated (paragraph 1.1) macro statements consist of
a label, an operator, an operand and optional comments.

The assembler interprets and processes these statements, generating
one or more binary instructions or data words, or performaing an
assembly process. A statement must contain at least one of these
elements and may contain all four types. Some statements are writ-
ten with only one operand; but others may have many. To continue a
statement on the following line, the control (CTRL) left arrow (+-)

,

echoed as ++, is used before the carriage return-line feed sequence
i+ + or)). Examples of program statements are given in Chapter 7,
Figures 7-1 and 7-3.

r
Statement labels, operators and operands may be represented eithe
numerically or symbolically. The assembler interprets all symbols
and replaces them with a numeric (binary) value.

1.5.1 Symbols

The programmer may create symbols to use as statement labels,
as operators and as operands. A symbol may consist of any
Version 47

n c , in701-5 June 1972



MACRO -210-

combination of from one to six characters of the following

set:

The 26 letters, A-Z
Ten digits, 0-9
Three special characters: $ (Dollar Sign)

% (Percent)
(Period)

The foregoing character set is the Radix-50 character set.

Any statement character which is not in the Radix-50 set is treated

as a symbol delimiter when encountered by the assembler.

If the first characters of a symbol are numeric, the symbol is

treated as through the numeric characters were not present. If the

first character is a period, it must not be followed by a digit.

Spaces must not be embedded in symbols. A symbol may actually have

more than six characters, but only the first six are meaningful to

MACRO- 10.

MACRO-10 accepts programs written using both upper and lower case

letters and symbols (e.g., programs written using the Teletype

Model 37). Lower case letters are treated as upper case in symbols;

additional special characters, and lower case letters elsewhere,

are taken without change.

1.5.2 Labels

A label is the symbolic name created by the source programmer to

identify a statement. If present, the label is written as the first

item in a statement and is terminated by a colon (:). (Refer to

paragraph 1.5.1 for a description of how symbolic names are formed.)

1.5.3 Symbolic Addresses

A symbol used as a label to specify a symbolic address must appear

first in the statement and must be immediately followed by a colon

(:). When used in this way, a symbol is said to be defined. A

defined- symbol can reference an instruction or data word at any

point in the program.

A label can be defined with only one value; if a programmer attempts

to redefine a label with a different value, the second value is

Version 47 JuNE 1972
1-6



-211- MACRO

I

ignored and an error is indicated (see Chapter 4 for error mes-
sages) . The following are legal labels:

$SUM:
ABC: DEP: (Both labels are legal)
F00

The following are illegal:

7ABC: (First character must not be a digit.)
LAB : (Colon must immediately follow label.)

If too many characters are used in a label, only the first six
characters given are used. For example the label ABCDEFGH: is
recognized by the assembler as being ABCDEF:.

Labels are used for programmer reference as addresses for jump
instructions, for loops and for debugging.

1.5.4 Operators

An operator may be one of the mnemonic machine instruction codes
(see DECsystem-10 System Reference Manual), a command to Monitor,
or a pseudo-operation code which directs assembly processing. These
assembly pseudo-op codes are described in this manual, and listed
with all other assembler defined operators in Appendix A.

Programmers may extend the power of the assembler by creating their
own pseudo-operators (see OPDEF pseudo-op)

.

An operator may be a macro name, which calls a user-defined macro
instruction. Like pseudo-ops, macros direct assembly processing;
but, because of their unique power to handle repetitions and to
extend and adapt the assembly language, macros are considered
separately (see Chapter 3). Operators are terminated with a space
or tab . •

1.5.5 Symbolic Operators

Symbols used as operators must be predefined by the assembler or
by the programmer. If a statement has no label, the operator may
appear first in the statement, and must be terminated by a space,
tab, or carriage return. The following are examples of legal operators:

'Version^
June 1972

1-7



MACRO -212-

MOV (A mnemonic machine instruction operator.)
LOC (An assembler pseudo-op.)
ZIP (Legal only if defined by the user.)

1.5.6 Operands

Operands are usually the symbolic addresses of the data to be ac-

cessed when an instruction is executed, or the input data or argu-

ments or a pseudo-op or macro instruction. In each case, the in-

terpretation of operands in a statement depends on the statement

operator. Operands are separated by commas, and terminated by a

semicolon (;) or by a carriage return-line feed.

In the mnemonic machine instruction and UUO call set, if an oper-

and is followed by a comma (spaces in the line are ignored) then

the operand is identified as an accumulator (see instruction format

description in paragraph 1.2.1). If an operand is not followed by

a comma, then it is viewed as an address (either indexed or indirect

if negative)

.

1.5.7 Symbolic Operands

Symbols used as operands must have a value defined by the user.

These may be symbolic references to previously defined labels where

the argument to be used by this instruction are to be found, or

the values of symbolic operands may be constants or character

strings. If the first operand references an accumulator, it must

be followed by a comma.

TOTAL: ADD AC 1, TAG)

The first operand, ACl, specifies an accumulator register, determined

by the value given to the symbol ACl by the user. The second oper-

and references a memory location, whose name or symbolic address is

TAG. If the user has equated ACl to 17, and the assembler has as-

signed TAG to the binary address, 00 0537, then the assembler inserts

17 in the accumulator field (bits 9-12) and 000537 in the address

field (bits 18-35) of this instruction. If an accumulator is not

specified, but the operator requires one, accumulator is assumed

by default. If an accumulator is specifies by the value >17g, the

four least significant bits are used.

Version 47 j une 1972

1-8



-213- MACRO

1.5.8 Comments

The programmer may add notes to a statement following a semicolon.
Such comments do not affect assembly processing or program execu-
tion, but are useful in the program listing for later analysis
or debugging. The use of angle brackets (<>) should be avoided in
comments because they may affect the assembly.

Each line of a program may contain a comment which explains the
purpose of the line and any special action it causes. A line may
also consist of only , a comment; this is usually done at the begin-
ning of each routine or major program section to explain the major
flow of control, entry and exit points and any other pertinent
information.

1.6 STATEMENT PROCESSING

The assembler has several symbol tables and corresponding search
routines. The symbol tables arranged in the order in which they
are searched are:

1. Macro Table - This symbol table contains macros,
user-defined operator definitions (op-defs) and
synonyms (refer to the description of the SYN
pseudo-op, paragraph 2.8.3). The macro table is
initially empty; it grows as the user defines
items.

2. Op-Code Table - This symbol table contains all of
the operator-codes (op-codes) , the UUO calls and
the assembler pseudo-operators (pseudo-ops) . Lists
of the foregoing items are given in Appendices A and
B. The op-code table is generated by the assembler
and is of fixed length; it cannot be changed except
by reassembling MACRO.

3. User Symbol Table - This symbol table contains all
user-defined symbols other than those which are
placed in the Macro Table. This table is initially
empty; it grows as the user defines items.

4. Mnemonic Table - This table contains the mnemonics
for the CALLI, MTAPE and TTCALL UUO's. The mnemonic
table is searched only if all other measures fail.
Any symbol found in this table is put into the macro
table as an op-def as though the user had defined it.
Examples of the mnemonics contains by this table are

a) RESET as defined by the CALLI 0,0
b) EXIT as defined in CALLI 0,12
c) OUTSRT as defined in TTCALL 3,0

Version 47 JuNE 1972
1-9



MACRO -214-

Internally, the macro table and the user symbol table occupy the same

space; however, the entries of each table are easily distinguishable

so no confusion takes place.

1.6.1 Order of Statement Evaluation

The following table shows the order in which the assembler searches

each statement field:

Label Field Operator Field Operand Field

1. Symbol suffixed by 1. Number 1. Number
colon. If colon is 2. Macro/OPDEF 2. Symbol
not found, no label 3. Machine operator 3. Macro/OPDEF
is present. 4. Assembler operator 4. Machine operator

5. Symbol 5. Assembler operator
6

.

CALL1 mnemonic

A single symbol could be used as a label, an operator, or an operand,

depending on where it is used.

The assembler first checks the operator field for a number, and if found,

assumes that no operator is present. Likewise, if a symbol is not a

macro, OPDEF, machine operator or assembler operator, the assembler will

search the symbol table. If a defined symbol is found, no operator is

present.

If a defined operator appears in an operand field, it must generate at

least one word of data. Statements that do not generate data may not

be used as part of operand expressions. If a statement used in an

operand expressions generates more than one word of data, only the

first word generated is meaningful.

1.6.2 Order of Expression Evaluation

Expressions are evaluated in the following order:

- (Unary operator)
+D, +0, + B, +F, +L
B Shift, <- Shift
Logical operators
Multiply/Divide
Add/Subtract

At each level, operations are performed left to right.

Version 47 June 1972

1-10



-215- MACRO

1.7 USER-DEFINED SYMBOLS

User-defined symbols are of two types: labels and assignments. Labels
are generated by entering a symbol followed immediately by a colon
(e.g., TAG:). Symbols used as labels cannot be redefined with a dif-
ferent value once they have been defined. The value of a label is the
value of the location counter at the time that the label is defined.

Assignments are used to represent, symbolically, numbers or bit patterns
Assxgnments ease the coding task in that only one line has to be changed"
(that containing the assignment) in order to change a number or bit pat-
tern which is used throughout the program. Assignment statements may be
changed at any time, the current value of an assignment is the last value
given to the symbol used.

1.7.1 Direct Assignment Statements

The macro inserts new symbols with their assigned values directly into
the symbol table by using a direct assignment statement of the form,

symbol=yalue}

where the value may be a number or expression. Note that the equal sign
must immediately follow the symbol. For example,

ALPHA= 5^
BETA= 17 )

A direct assignment statement may also be used to give a new symbol the
same value as a previously defined symbol:

BETA= 17^
GAMMA* BETA)

The new symbol, GAMMA, is entered into the symbol table with the value 17.

The value assigned to a symbol may be changed:

ALPHA= 7)

changes the value assigned in the first example from 5 to 7.

Version 47
June 1972

1-11



MACRO
-216"

Direct assignment statements do not generate instructions or data in the

object program. These statements are used to assign values so that symbols

can be conveniently used in other statements.

1.7.2 Local and Global Symbols

User-defined symbols may be used as local and global symbols in addition

to beging used as label and assignment symbols.

Local symbols are symbols which are known only to the program in which

they are defined. Two separately assembled macro programs may contain

local symbols which have the same mnemonic but different definitions;

these programs, however, may be loaded and executed without conflict

since the symbols are defined as local to each program.

Global symbols are symbols which can be recognized by programs other

than the one in which it is defined. The manner in which a global

symbol is written or defined depends on where it is located: in the pro-

gram in which it is defined or the program in which it is a reference to

a symbol defined elsewhere.

Global symbols located in the program in which they are defined must be

declared as available to other programs by the use of the pseudo-ops

INTERN or ENTRY (see paragraphs 2.5.14.1 and 2.5.14.3) or by the use of

the delimiter =: in their definition statement. For example, the symbol

FLAG may be declared a global symbols by:

a. INTERN FLAG (the symbol FLAG is declared internal)

,

b. ENTRY FLAG (identifies the entry point of a library subroutine),

c. FLAG=: 200 (FLAG is given the value 2 00 and is declared internal)

NOTE

The statement in item c of the foregoing examples

(i.e., FLAG=: 200) is equivalent to the series

INTERN FLAG
FLAG= 200

Global symbols located in a program in which they are references to symbols

defined in other programs must be declared as external symbols by the use

of the EXTERN pseudo-op (see paragraph 2.5.14.1) or a ## suffix. For

example, the statement

EXTERN FLAG

Version W 1 . 12
j une 1972



-217- NACRO

I declares the symbol FLAG as an external reference. The statement

MOVE 0,FLAG##

also declares the symbol FLAG as an external reference; this statement
is the equivalent of the series:

EXTERN FLAG
MOVE 0,FLAG

1.7.3 Deleted Symbols

Sometimes a programmer may want to define a symbol in MACRO but not have
that symbol typed out by DDT (refer to the DDT Programmer's Reference
Manual). In such a case, the programmer should define that symbol with
a double equal sign:

PLAG== 200)

FLAG will be assigned the value 200 and will be

a. Fully available in MACRO.

b. Available for type-in with DDT (assuming that symbolswere loaded for the program containing FLAG).

c Unavailable for type-out by DDT.

This is equivalent to defining FLAG by:

PLAG= 200)

and then typing

FLAG$K (the symbol $ represents ALT MODE)

to DDT.

A symbol may be defined with == and declared internal in the following
manner

FLAG==:200^

Version 47
, ln -,„
June 1972

1-13



MACRO "218-

is equivalent to

INTERN FLAG^
FLAG==200^

The programmer may also want to define a label in MACRO but have the out-

put of the label suppressed in DDT. The following constructions may be

used:

LABEL:! LABEL is a suppressed local symbol.
LABEL::! LABEL is a suppressed internal symbol.

1 . 8 NUMBERS

Numbers used in source program statements may be signed or unsigned, and

are interpreted by the assembler according to the radix specified by the

programmer, where

2<radix<10

The programmer may use an assembler pseudo-op, RADIX, to set the radix

for the numbers which follow. If the programmer does not use a RADIX

statement, the assembler assumes a radix of 8 (octal) except in the case

of the POINT pseudo-op (see paragraph 2.5.2).

The radix may be changed for a single numeric term, by using the quali-

fier followed by a letter, D (for decimal), (for octal), B (for binary),

or F (for fixed-point decimal fractions) . Note that these are not control

characters. Thus,

+ D10 is stored as 1010
+010 is stored as 1000
+B10 is stored as 0010

The qualifier +L is used for bit position determination of a numeric

value. + Ln generates an octal value equal to the number of bits to

the left of the leftmost 1, if the numeric value n were stored in a

computer word.

Expression Resultant Value

+ L0 44

44 zero bits
o

0000000000. . . .0000000000

Version 47 JuNE 1972

1-14



-219- MACRO

Expression Resultant Value

+ L5

+ L-1

41

41g zero bits

0000000000. . . .0000000101

1111111111. . . .1111111111

The suffixes K, M and G may be added to numbers as a shorthand method of
specifying the number of zeros which are to follow the given number. The
meaning of each suffix is:

a) K, add three zeros (e.g., 5K = 5000),

b) M, add six zeros (e.g., 5M = 5000000),

c) G, add nine zeros (e.g., 5G = 5000000000).

1.8.1 Arithmetic and Logical Operations

Numbers and defined symbols may be combined using arithmetic and logical
operators. The following arithmetic and logical operators may be used.

Operator Meaning

+ Add
- Subtract
* Multiply
/ Integer Divide
& AND
1 Inclusive OR

The assembler computes the 36-bit value of a series of numbers and

defined symbols connected by arithmetic and logical operators, trun-
cating from the left, if necessary. The following examples show how
these arithmetic and logical operators are written in statements.

B= 65+X11-3}
MULI AG1+7,RH0/31^
MOVE A+ 3, BETA- 5)

Combinations of numbers and defined symbols using arithmetic and logical
operators are called expressions.

1.8.2 Evaluating Expressions

When combining elements of an expression, the assembler first performs
unary operations (leading + or -) , then binary shifts. The logical
operations are then done from left to right, followed by multiplications

Version 47 1-15 June 1972



MACRO -220-

and divisions, from left to right. Division always truncates the frac-

tional part. Finally, additions and subtractions are performed, left
35

to right. All arithmetic operations are performed modulo 2

For example, in the statement:

TAG: TRO 3,1+A&C^

the first operand field is evaluated first; the comma terminating this

operand indicates that this is an accumulator. In the second operand

field, the logical AND is performed first, the result is added to one,

and the sum is placed in the memory address field of the machine instruc-

tion.

To change the normal order of operations, angle brackets may be used to

delimit expressions and indicate the order of computation. Angle brackets

must always be used in pairs.

Expressions may be nested to any level, with each expression enclosed in

a pair of angle brackets. The innermost expression is evaluated first,

the outermost is evaluated last. The following are legal expressions:

A+B/5
<<C-D+B-29>*<A-41>>+1

| A=<B=<O10>>

1.8.3 Numeric Terms

A numeric term may be a digit, a string of digits, or an expression en-

closed in angle brackets. The: assembler reduces numeric terms to a single

36-bit value. This is useful when specifying operations such as local

radix changes and binary shifts, which require single values.

For example, the +D operator changes the local radix to decimal for the

numeric term that follows it. The number 23,
Q
may be represented by

tD23
+D<5*2+13>
fD<TEN*2+THREE>

10
but 23 in may not be written,

+D100-77

Version 47 June 1972

1-16



-221- MACRO

because the +D operator affects only the numeric term which follows it,

and in this example the second term (77) is taken under the prevailing
radix, which is normally octal.

The B shift operator is preceded by a numeric term (the number to be shifted)
andis followed by another term (the bit position of the assumed point)

.

The following are legal:

+F167B17
+B10011B8
566B5

<MARK + SIGN>B<PT-XXV>

A bracketed numeric term may be preceded by a + or a - sign.

1.8.4 Binary Shifting

A number may be logically shifted left or right by following it with the

letter B, followed by a numeric term, n, representing the bit position in

which the right-hand bit of the number should be placed. The numeric term,

n, may be any (decimal) bit position, starting with zero and numbering from
left to right. If n is not used, B35 is assumed; n is taken as modulo 256

decimal. Thus, the number +D10 is stored as 000000 000012; but +D10B32 is

shifted left three binary positions and stored as 000000 000120; and D10B4
is shifted left 31 positions, so that its rightmost bit is in bit 4 and
stored as 240000 000000.

Binary shifting is a logical operation, rather than an arithmetic one.

The following are legal binary shifts:

1B0 400000 000000
1B17 000001 000000
1B35 000000 000001
-1B35 777777 777777 (see explanation below)
-1B53 000000 777777
-1B70 000000 000001

Note that the following expressions are equivalent:

10B32 +O10B32 E 10B <42-10>= 10B< +D <42-10>>= 10B<t D42- +D10>

Version 17 J UNE 1972

1-17



MACRO
-222-

The unary operators preceding a value are interpreted first by the as-

sembler before the binary shift. A leading plus sign has no effect,

but a leading minus sign causes the assembler to shift and then to

store the 2's complement.

Binary shifting may operate on numeric terms, as defined in Section 1.3.2.

1.8.5 Left Arrow Shifting

If two expressions are combined with the operator "+-", i.e., <m>«~<n> , the 36-

bit value of expression m is shifted V bits (where V is the value of expres-

sion n) in the direction of the arrow (left) if V is positive or against

the arrow if V is negative. The effective magnitude of V is that of the

address of an LSH instruction.

1.8.6 Floating-Point Decimal Numbers

If a string of digits contains a decimal point, it is evaluated as a float-

ing point decimal number, and the digits are taken radix 10. For example,

the statement,

17.0 is stored as 205420 000000.

Floating-point decimal numbers may also be written, as in FORTRAN, with

the number followed by the letter E, followed by a signed exponent repre-

senting a power of 10. The following examples are valid:

NUM1
NUM2
NUM3

17.2E-4^
3.85E2p
-567.825E33)

1.8.7 Fixed-Point Decimal Numbers

As shown in Section 1.8, +D followed by a numeric term, is used to enter

decimal integers.

Fixed-point decimal numbers (mixed numbers) are preceded by +F followed by

a number (not a numeric term, defined below) which normally contains a deci-

mal point. The assembler forms these fixed-point numbers in two 36-bit

registers, the integer part in the first and the fractional part in the

second. The value is then stored in one storage word in the object pro-

gram, the integer part to the left of the assumed binary point, the frac-

tional part to the right.

Version 47 i-is June 1972



-223- MACRO

The binary shift (B) operator is used to position the assumed point. The
number +F123.45B8 is formed in two registers:

000000 000173 (the integer part)
346314 631462 (the fraction part, left-justified)

The B operator sets the assumed point after bit 8, so the integer part is

placed in bits 0-8, and the fraction part in bits 9-35 of the storage word.
In this case, the integer part is truncated from the left to fit the 9-bit
integer field. The fraction part is moved into the 27-bit field following
the assumed point and is truncated on the right. The result is,

173346 314631

(assumed point)

If a B shift operator does not appear in a fixed-point number, the point is

assumed to follow bit 35, and the fractional part is lost.

Fixed-point numbers are assumed to be positive unless a minus sign precedes
the qualifier:

000000 000173 +F123.45
000173 346314 +F123. 45B17 -

346314 631462 +F123.45B-1

777777 777604 -+F123.45
777604 431463 -+F123.45B17
431463 146316 -+F123.45B-1

Negative fixed-point numbers, such as the example above, are assembled as
if they were positive numbers, complemented, and then logically shifted.

1.9 ADDRESS ASSIGNMENTS

As source statements are processed, the assembler assigns consecutive
memory addresses to the instruction and data words of the object program.
This is done by incrementing the location counter each time a memory
location is assigned. A statement which generates a single object program
storage word increments the location counter by one. Another statement
may generate six storage words, incrementing the location counter by six.

The mnemonic instruction and monitor command'1 '- statements generate a single
storage word. However, direct assignment statements and some assembler
pseudo-ops do not generate storage words, and do not affect the location

1 The terms monitor command (as used here) and programmed operator are
synonymous.

1—19
Version Wl j une 1972



MACRO -224-

counter. Other pseudo-ops and macros may generate many words in the

object program.

1.9.1 Setting and Referencing the Location Counter

The MACRO-10 programmer may set the location counter by using the

pseudo-ops, LOC and RELOC, which are described in Chapter 2. He may

reference the location counter directly by using the symbol, point (.).

For example, he can transfer to the second previously assigned storage

word by writing:

JRST .-2)

1.9.2 Indirect Addressing

The character @ prefixing an operand causes the assembler to set bit 13

in the instruction word, indicating an indirect address. For an ex-

planation of indirect addressing and effective address calculation,

see the PDP-lO System Reference Manual.

1.9.3 Indexing

If indexing is used to increment the address field, the address of

the index register used is entered in parentheses, as the last part

of the memory reference operand. This is normally a symbolic name

defined by a direct assignment statement, or an octal number in the

range 1-17, specifying 1 of the 15 index registers. However, the

address of the index register may be any legal expression or an ex-

pression element.

This is a symbolic, indirect, indexed, memory reference:

A: ADD 4,@NUM(17)^

NOTE

The parentheses cause the value of the enclosed expres-

sion to be interpreted as a 36-bit word with its two

halves interchanged, e.g., (17) is effectively

000017000000 . The 36-bit value is added to the in-

struction and may modify it. This is often used to

generate right half values from left half expressions;

for example, the statement

TL0 AC,(1B0)

which sets the sign bit.

Version 47 3.-20
JuNE 1972



225- MACRO

1.10 LITERALS

In a MACRO statement, a symbolic data reference may be replaced by
a direct representation of the data enclosed in square brackets
([]). This direct representation is called a literal. The as-
sembler stores data found within brackets in a Literal table, as-
signs an address to the first word of the data and inserts that
address in the machine instruction.

A literal may consist of more than one statement and may generate
more than one word of data. A literal must, however, generate at
least one word but no more than 18 words. Literals which consist
of only pseudo-ops (such as RADIX) which do not generate data or
direct assignments are illegal.

Literals may be nested (i.e., bracketed data within other sets of
bracketed data) up to 18 levels.

The following is a simple example of the user of literals. Byte
instructions must reference by a byte pointer in this manner:

BP
LDB
POINT 10,A+3,14,)

(POINT is a pseudo-op which sets up a byte pointter word.) A
literal can be used to insert the POINT statement directly. For
example

LDB 4, [POINT 10,A+3,14]J

Literals are often used as constants as, for example:

a) PUSH 17, [0) (note that generates one word of zero).
b) MOVE L. [3,14]

The following is an example of a multi-line literal:

GETCHR: SOSG IBUF+2 ;ANY CHARS LEFT?
PUSHJ P,[IN N, ; NO, READ SOME IN

*0FJ p » ;N0 UNUSUAL CONDITIONS
STATZ N, 7U0000 ;CHECK FOR ERRORS
JRST [MOVEI E, [SIXBIT /INPUT ERROR/]

JRST ERRPNT] ; PUBLISH ERROR MESSAGE

TTT1D no J?SS
ENDPIL] ;END OF FILE HANDLER

H£? AC,IBUF+1
; PICKUP NEXT CHAR

POPJ P

,

Version 47 JuNE 1972
1-21



MACRO -226-

NOTE

The closing right square bracket does not terminate the
literal if placed after the semicolon.

The excessive use of literals, especially for small subroutines, is

not recommended since they use up assembler space at the rate of four

locations per data word generated. Literals also make debugging

more difficult and may cause page faults in the KI-10 processor

virtual memory allocation.

The PDP-6 version of macro (MACRO-6) only permitted literals to con-

tain one statement but it permitted the right bracket to be dropped.

Dropping the right bracket is not permitted by MACRO-10.

Two pseudo-ops MLON and MLOFF provide compatibility with old pro-

grams. Use of these pseudo-ops is required since

MOVE AC,[SIXBIT/TEXT/^

is legal in MACRO-6, even though the closing right bracket (]) of

the literal has been omitted. In normal mode, MACRO does not allow

such an unterminated literal. The pseudo-op

MLON

is set at the start of each assembly to cause the assembler to

consider all code following a left bracket as part of a literal,

until such time as the assembler processes a matching right bracket.

Thus, carriage-return, line-feed does not end a literal, but

rather the programmer must insert a right bracket. The pseudo-op,

MLOFF

set by the switch /0, places MACRO into the compatibility mode in

which literals may occupy only a single line.

The symbol . (current location) is not changed by the use of

literals. It retains the value it had before the literal was

entered.

Version 47 June 1972

1-22



-227- MACRO

Chapter 2

MACRO-10 Assembler
Statements—Pseudo-Ops

Assembler statements or pseudo-ops direct the assembler to perform

certain assembler processing operations, such as converting data to

binary under a selected radix, or listing selected parts of the assem-
bled object program. In this chapter, these assembler processing

operations are fully described.

NOTE

The pseudo-op name must follow the rules
for constructing a symbol (refer to Para-
graph 1.5.1) and must be terminated by a
character other than those listed in Para-
graph 1.5.1 as valid symbolic characters.
(Normally, a space or tab is used as a
terminator.)

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE

MACRO-10 normally assembles programs with relocatable binary addresses,
so that the program can be located anywhere in memory for execution as

a function of what has been previously loaded. When desired, the assem-
bler will also assign absolute location addresses, either for the entire
program or for selected parts. Two pseudo-ops control the address mode:
RELOC and LOC.

Version 47 jUNE 1972

2-1



MACRO
-228"

RELOC NV

This statement sets the location counter to n, which may be a number

or an expression, and causes the assembler to assign relocatable ad-

dresses to the instructions and data which follow. Since most re-

locatable programs start with the location counter set to 0; the

implicit statement,

RELOC 0j

begins all programs, and need not be written by the programmer who

wants his program assembled with relocatable addresses.

LOC N^

This statement sets the location counter to n, a number or an expres-

sion, and causes the assembler to assign absolute addresses, begin ing

with n, to the instructions and data which follow. If the entire pro-

gram is to be assigned absolute locations, a LOC statement must precede

all instructions and data.

If n is not specified

(LOC^)

zero is assumed initially.

If only a part of the program is to be assembled in absolute locations,

the LOC statement is inserted at the point where the assembler begins

assigning absolute locations. For example, the statement,

LOC 2

causes the assembler to begin assigning absolute addresses, and the

next machine instruction or data word is stored at location 200
g

.

Version 47 JuNE 1972

2-2



-229- MACRO

To change the address mode back to relocatable, an explicit RELOC

statement is required. If the programmer wants the assembler to con-

tinue assigning relocatable addresses sequentially, he writes,

RELOC J

To switch back to the next sequential absolute assignment, he writes,

LOC^

Thus, the programmer is not required to insert a location counter

value in either a LOC or RELOC statement, and unless he does, both

the relocatable coding and the absolute coding will be assigned se-

quential addresses. This is shown in the following skeleton coding.

The single quote mark is used here, and in MACRO-10 listings, to

identify relocatable addresses.

Location Counter Program

ADD 1,X ;RELOC IS IMPLICIT.

000074
001000

LOC 1000 ; CHANGES TO ABSOLUTE, STARTING
SUB 5, TOT ;WITH 001000.

001034
000074'
000075 f

001034

RELOC
ADD 2,XAT
LOC
EXP A-X+7

;SETS LOCATION COUNTER TO 74

; SWITCHES LOCATION COUNTER
;BACK TO ABSOLUTE SEQUENCE.

When operating in the relocatable mode, the assembler determines

whether each location in the object program is relocatable or absolute,

using an algorithm described in Chapter 5.

2.1.1 Relocation Before Execution - PHASE and DEPHASE Statements

Part of a program can be* moved into other locations for execution.

This feature is often used to relocate a frequently used subroutine,

or iterative loop, into fast memory (accumulators 0-17
ft

) just prior

to execution.

Version KJ June 1972

2-3



MACRO -230-

To use this feature, the subroutine is assembled at sequential re-

locatable or absolute addresses along with the rest of the program,

but the first statement before the subroutine contains the assembler

operator, PHASE, followed by the address of the first location of the

block into which the subroutine is to be moved prior to execution.

All address assignments in the subroutine are in relation to the

argument of the PHASE statement. The subroutine is terminated by a'

DEPHASE statement, which requires no operands, and which restores the

location counter.

In the following example, which is the central loop in a matrix inver-

sion, a block transfer instruction moves the subroutine LOOP into

accumulators 11-16.

MOVE [XWD LOOPX, LOOP]
Relocatable BLT L00P+4
Address JRST LOOP

LOOPX

:

PHASE 11
LOOP

:

MOVN A (X)
FMP MPYR

Absolute FADM A (Y)
Address SOJGE X, .-3

JRST MAIN
DEPHASE

The label LOOP represents accumulator 11, and the point in the SOJGE

instruction represents accumulator 14.

Note that the code inside the phase to dephase program segment is

loaded into the address following the previous relocatable. code; all

labels inside the segment, however, have the address corresponding

to the phase address. Thus the phased code cannot, in general, be

executed until it has been moved to the address for which it was

assembled.

2.2 NAMING PROGRAMS

Normally the first statement in a program gives the name of the pro-

gram using the TITLE pseudo-op. This pseudo-op has the form

TITLE NAME^

in which the single operand (i.e., NAME) may contain up to 60 characters,

Version 47 June 1972

2-4



-231- MACRO

The name given will be printed at the top of each page of the program

listing. The first 6 characters of the given title will appear in the

assembled program as the program name. If no title is given, the

assembler inserts the name .MAIN. The program name given in the TITLE

statement is used when debugging with DDT in order to gain access to

the program's symbol table.

Only one TITLE pseudo-op is permitted in a program; it can appear any-

where in the program but is normally the first line on the first page.

Remember that a name may be longer than 6 characters, however, only

the first 6 symbol combinations (within the radix-50 set) will be used

for the program name.

2.2.1 Program Subtitles

After the first page of a program listing, the first data line en-

countered on a page may be a subtitle. Subtitles are generated using

the pseudo-op SUBTTL. This pseudo-op has the form

SUBTTL SUBTITLE)

in which the single operand (SUBTITLE) may- contain up to 40 characters,

A subtitle is printed as the first data line on a page and all suc-

ceeding pages until the end of the listing or until the subtitle is

changed. If the current subtitle is changed by another SUBTTL state-

ment which is the first data line on a page, the new subtitle appears

on the new page and all subsequent pages. If the SUBTTL statement is

not the first statement on a page, the new subtitle appears on the

next page and all subsequent- pages.

Subtitles can be changed as often as required; they do not generate

data and they do not affect the binary procedure only the listing.

They are used for informational purposes only.

2.3 PROGRAM ORIGIN

Initially all programs start with an implicit RELOC which sets the

mode to be relocatable and the first address to be 0. Unless other-

wise changed, the code generated will be a single-segment program.

Version 47 June 1972

2-5



MACRO -232-

The programmer can change the relocatable nature of the program by

using a LOC statement to generate absolute code (normally used for

diagnostics) or to generate high-segment code.

High-segment (or two-segment programs) have two logical address

spaces; one starting at and increasing, the other starting at

400000 (12 8K) and increasing. Two pseudo-ops, HISEG and TWOSEG con-

trol High or two-segment program operation.

2.3.1 HISEG Statements - The HISEG Pseudo-Op Statement

This pseudo-op does not affect the assembly operations in any way ex-

cept to generate information that directs the Loader to load the

current program into the high segment if the program has reentrant

(two-segment) capability. (Refer to Block Type 3 Load Into The High

Segment, paragraph 6.2.1.1, for additional information.) This pseudo-

op should appear at the beginning of the source program.

NOTE

Whenever possible the pseudo-op TWOSEG
should be used instead of HISEG. This
pseudo-op provides functions which are
superior to those of HISEG.

HISEG may be followed by an optional argument which represents the

program high-segment origin address. This argument, when used, must

be equal to or greater than 400000 and must be a K-bound (even multiple

of 2000) value. The code produced by HISEG will execute at either

relocatable or relocatable 400000 depending on the loading instruc-

tions given.

HISEG must not be used if the programmer wishes to reference data in

the low segment since locations in the low segment are referenced by

absolute addresses only.

2.3.2 TWOSEG Statements

The TWOSEG pseudo-op generates code that directs MACRO and LOADER to

assemble and load a two-segment program in one file. This pseudo-op

outputs a block type 3 (refer to Paragraph 6.2.1.1) which signals the

LOADER to expect two segments. An optional argument may be present

Version 47 June 1972

2-6



-233- MACRO

which is the first address in the high segment. If no argument is

present, 400000 is assumed.

The high segment code must be preceded by

RELOC 400000

or greater; the low segment code by

RELOC

or an argument indicating the low segment. Each RELOC pseudo-op

switches the relocation.

The listing produced by the TWOSEG pseudo-op shows high segment

addresses as greater than 400000 or the argument of the pseudo-op,

and low segment addresses as less than 400000 or the argument of the

pseudo-op. All relocatable addresses are flagged with a single quote.

2 . 4 ENTERING DATA

2.4.1 RADIX Statements

When the assembler encounters a numerical value in a statement, it con-

verts the number to a binary representation reflecting the radix

indicated by the programmer. The statement,

RADIX N^

where n is a decimal number, 2_<_ n < 10, sets the radix to n for all

numerical values that follow, unless another RADIX statement changes

the prevailing radix or a local radix change occurs (see below)

.

For example > if the programmer wants the assembler to interpret his

numbers as decimal quantities , then the prevailing radix must be set

to decimal before he uses decimal numbers.

RADIX 10

J

The statement, RADIX 2, sets the prevailing radix to binary.

Version 47 June 1972

2-7



MACRO -234-

The implicit statement, RADIX 8, begins every program; if the pro-

grammer wants to enter octal numbers, this statement is ndt necessary.

2.4.2 Entering Data Under the Prevailing Radix

Data is entered under the prevailing radix by typing the data, followed

by a carriage return:

765432234567J

Data may be labeled and contain expressions:

LAB: 456+A+BA C+D>J

Data may also be entered by first using a direct assignment statement

to place a symbol with an assigned value in the symbol table, and

then using the symbol to insert the assigned value in the object pro-

gram. For example, the direct assignment statements,

A=2 J

cause two entries in the symbol table. The following statement enters

the sum of the assigned values in the object program at symbolic

address REX.

REX: A+B-^ REX contains 000000 00000?

The radix can also be changed locally, that is, for a single statement

or a single value, after which the prevailing radix is automatically

restored, as described in Section 1.3.

2.4.3 DEC and OCT Statements

To change to a local radix for a single statement, the programmer

writes:

DEC N,N,N, .

.

.Uj

where all of the numbers and expressions are to be interpreted as

decimal numbers. The numbers or expressions following the operator

Version 47 June 1972

2-8



-235- MACRO

are separated by commas, and each will generate a word of storage.

OCT N,N,N,. . .N^

changes the local radix to octal for this statement only, and

generates a word of memory for each number or expression.

The statement,

DEC 10 J 4.5,3.1 iH6,6.03E-26,3 J

generates five decimal words of data.

2.4.4 Changing the Local Radix for a Single Numeric Term

To change the radix for a single number or expression, the numeric

term is prefixed with +D, +0, +B, or tF, as explained in Chapter 1.

If an expression is used, it must be enclosed in angle brackets,

+D<A+B-C/200> J

These prefixes may generate a word, or part of an instruction word.

The statement,

T0TAL2:M0VE +D10,ABZ J

causes the contents of ABZ to be moved to accumulator 12 .

o

When the assembler encounters a numeric term, it forms the binary

representation in a 36-bit register under the prevailing or local

radix. If the quantity is a part of an instruction, it is trun-

cated to fit in the required field.

For example, the accumulator field must have a final value in the

range 0-17 o . In the statement,
o

MOVE tD60,ABZ ^

the assembler first interprets the accumulator address in a 36-bit

register, forming the integer 000000000074: but takes only the

rightmost four bits and places them in the accumulator field of

the instruction, which results in the selection of accumulator 14 .

Version 47 June 1972

2-9



MACRO -236-

2.4.5 RADIX 50 Statement

Another radix changing statement is available, but it is used primarily
in systems programming. This is RADIX50 n,sym^ which is used by the

assembler, PDP-10 Loader, DDT, and other systems programs to pack
symbolic expressions into 32 bits and add a 4-bit code field n in

bits 0-3. This is explained in Appendix F of this manual. (The

mnemonic SQUOZE may be used in place of RADIX50 .

)

2.4.6 EXP Statement

Several numbers and expressions may be entered by using the EXP state-

ment:

EXP X,4, +D65,HALF,B+362-A J

which generates one word for each expression; five words were

generated for the above example.

2.4.7 Z Statement

A zero word can be entered by using the operator, Z.

LABEL: Z)

generates a full word of all zeros at LABEL. If operands follow the Z,

the assembler forms a primary machine instruction, with the operator

field and other unknown fields zeroed. In the statement,

Z 3, J

the assembler finds an accumulator field, but no address field, and

generates this machine instruction: 000140 000000.

2.5 INPUT DATA WORD FORMATTING

2.5.1 BYTE Statement

To conserve memory, it is useful to store data in less than full 36-bit

words. Bytes of any length, from 1 to 36 bits, may be entered by using

a BYTE statement.

BYTE (N) X 3 X,X J

The first operand (n) is the byte size in bits. It is a decimal number

in the range 1-36, and must be enclosed in parentheses. The operands

following are separated by commas, and are the data to be stored. If

an operand is an expression, it is evaluated and, if necessary, truncated

from the left to the specified byte size. Bytes are packed into words,

Version 47 June 1972
2-10



-237- MACRO

starting at bit 0, and the words are assigned sequential storage loca-

tions. If, during the packing of a word, a byte is too large to fit

into the remaining bits, the unused bits are zeroed and the byte is

stored left-justified in the next sequential location.

In the following statement, three 12-bit bytes are entered:

LABEL: BYTE (12)5,177,N J

This assembles at LABEL as, 0005 0177 0316, where N=316.

The byte size may be altered by inserting a new byte size in parentheses

immediately following any operand. Notice that the parentheses serve

as delimiters, so commas must not be written when a new byte size is

inserted. The following are legal:

BYTE (6)5(14)NT(3)6,2,5 J

where 6 is entered in a 6-bit byte, NT in the following 14-bit byte,

6 in the following 3-bit byte, followed by 2 and 6 in 3-bit bytes. A

BYTE statement can be used to reserve null fields of any byte size. If

two consecutive delimiters are found, a null field is generated.

BYTE (18) ,5 J

When the assembler finds two delimiters, it assembles a null byte. In

this case, 000000 000005. To enter ASCII characters in a byte, the

characters are enclosed in quotation marks

.

BYTE (7)" A" J

Text handling pseudo-ops are discussed in paragraph 2.5.5.

2.5.2 POINT Statement - Handling Bytes

Five machine instructions are available for byte manipulation.

These instructions reference a byte pointer word, which is

generated by the assembler from a POINT statement of the form,

LABEL: POINT s, address, b J (s and b are decimal)

where the first operand s is a decimal number indicating the byte

size, the second operand is the address of the memory location

which contains the byte, and the third operand, b, is the bit

position in the word of the right-hand bit of the byte (if b

is not specified, the bit position is the nonexistent bit to the

Version 47 2-11 June 1972



000000 AA : BYTE (6)5
000000

'

AB : POINT 6 J AA J 5

000000 ' AC: POINT 6,AA

00000 1
' START: LDB 3,AB

000002 ' ILDB 3., AC

MACRO -238-

left of bit 0) . The address specified in the second operand may
be indirect and indexed. If the byte size is not specified,

MACRO-10 assumes 36 bits.

In the following example, an LDB (load- a byte from a memory loca-
tion into an accumulator) and an ILDB instructions are used, along
with three assembler statements. The ILDB instruction "increments"
AC to look like AB, then does a load byte; the effect of the two
instructions is the same.

000000' 050000
000001 • 360600
000002* 440600

000003' 135140
000004' 134140

The first statement enters the quantity 5 in a 6-bit byte at

symbolic address AA which is 0. The second statement is for

reference by the load byte instruction. When the LDB is executed,
the machine goes to AB for the byte size, its address, and bit
position. In this case, it finds that the byte size is 6 bits,

the byte is located in the word AA, and the right-hand bit of

the byte is in bit 5. The byte is then loaded into accumulator 3,

where it looks like this: 000000 000005.

The other byte manipulation mnemonic instructions reference the

byte pointer word in similar ways. The deposit byte (DPB) in-

struction takes a byte from an accumulator and deposits it, in

the position specified by the pointer word, in a memory word.

The increment byte pointer (IBP) instruction increments the bit

position indicator (the third operand in the referenced POINT

word) by the byte size. This is useful when loading or deposit-
ing a string of bytes, using the same byte pointer word.

The increment and load byte (ILDB) and increment and deposit byte

(IDPB) instructions increment the byte pointer word by the byte

size before loading or depositing.

Version 47 2-12 j UNE 1972



-239- MACRO

2.5.3 IOWD Statement: Formatting I/O Transfer Words

The assembler generates I/O transfer words in a special format
for use in BLKI and BLKO and all four pushdown instructions.
The general statement is,

IOWD N,Mj

where two operands, which may be numbers or expressions, follow
the IOWD operator. This statement generates one data word.
The left half of the assembled word contains the 2*s complement
of the first operand n, and the right half-word contains the
value of the second operand m, minus one. For example,

IOWD 6,tD256-^

assembles as 777772 000377.

2.5.4 XWD Statement: Entering Two Half-Words of Data

The XWD statement enters two half-words in a single storage word.
It is written in the form,

XWD LHW,RHW J

where the first operand is a symbol or expression specifying the
left half-word, and the second operand specifies the right half-
word. Both are formed in 36-bit registers and the low order 18-
bits are placed in the half-words. The high-order 18 bits of each
operand are ignored. Three examples follow:

XWD k y Bj
XWD SUM+2,DES+5^>
XWD START, ENDJ

XWD statements are used to set up pointer words for block transfer
instructions. Block transfer pointer words contain two 18-bit
addresses: the left half is the starting location of the block
to be moved, and- the right half is the first location of the
destination. A, ,B may also be used to duplicate the results of
XWD A,B.

Version^
June 1972

2-13



MACRO
*240~

2.5.5 Text Input

The assembler translates text written in full 7-bit ASCII or 6-bit

compressed ASCII. It will also format 7-bit ASCII with a null

character at the end of text, if desired. These codes are listed

in Appendix E

.

In all three text modes, the printing symbols in the code set are

translated to their binary representation.

To translate and store a single word containing as many as five

7-bit ASCII characters, right- justified, the input characters are

enclosed in quotation marks.

"AXE") is stored as ««,«,
0000000 0000000 1000001 1011000 1000101

null null AXE
Notice that characters are right- justif ied, and bit 0, which is

not used, is set to zero.

Up to six 6-bit ASCII characters may be translated and stored,

right-justified, in a single word by enclosing the input charac-

ters in single quotation marks.

'TABLES' is stored as

110100 100001 100010 101100 100101 110011TABLES
NOTE

The quotation marks (single or double) may

only be used to assemble a single word. To

input strings of text characters, the fol-

lowing three pseudo-ops must be used.

2.5.5.1 ASCII, ASCIZ, and SIXBIT Statement - To enter strings of

text characters, the operators ASCII, SIXBIT, and ASCIZ are used.

The delimiter for the string of text characters is the first non-

blank character following the character that terminates the operator

(refer to the note on page 2.1). The binary codes are left- justif ied.

Unused character positions are set to zero (null) .
Text is termi-

nated by repeating the initial delimiter. If the initial delimiter

is a symbol constituent, the pseudo-op must be followed by a space

or a tab.

Version 47 2 -i4
JuNE 1972



-241- MACRO

The statement

ASCII "AXE" J

where the quotation marks are the delimiters, assembles as

1000001 1011000 1000101 0000000 0000000
A X E null null

The operator ASCIZ (ASCII Zero) guarantees a null character at
the end of text. If the number of characters is a multiple of
five, another all zero word is added. For example,

ASCIZ/"AXE"/^

assembles as,

0100010 1000001 1011000 1000101 0100010"A X E "

followed by another word of zeros.

0000000 0000000 0000000 0000000 0000000
null

When thefull 7-bit ASCII code set is not required, the 64-character
6-bit subset may be entered, using the SIXBIT operator. Six charac-
ters are left-justified in sequential storage words. Format of
the SIXBIT statement is the same as for ASCII statements. To derive
SIXBIT code:

a. Convert lower case ASCII characters to upper case
characters.

b. Add 40g to the value of the character.

c. Truncate the result to the rightmost six bits.

2.5.6 Reserving Storage

The programmer can reserve single locations, or blocks of many
locations for use during execution of his program.

Version 47 j UNE 1972

2-15



MACRO -242-

2.5.6.1 Reserving a Single Location - The number sign (#) , suf-

fixing a. symbol in an operand field, is used to reserve a single

location. The symbol is defined, entered in the assembler's

symbol table, and can be referenced elsewhere in the program with-

out the number sign. For example,

!.,AB: ADD 3,TEMP# J

reserves a location called TEMP at the end of the program, which

may be used to store a value entered at some other point in the

program. This feature is useful for storing scalars, and other

quantities which may change during execution.

The pseudo-op INTEGER may be used to reserve storage locations

at the end of the program on a one-per-given name basis. For

example the statement

INTEGER TEMP, FOO, BAR

^

will reserve 3 locations identified as TEMP, F00 and BAR. The

assignment of the locations to the names given is performed on

an alphabetical basis by the assembler rather than on the order

in which the names are given. For example, the order of the loca-

tions reserved by the foregoing INTEGER statement would be BAR,

FOO then TEMP.

Multiple word locations may be reserved by the ARRAY pseudo-op.

For example, the statement

ARRAY FOO [2*3]^

reserves a 2-word by 3-word array in memory which is identified by

the name FOO.

NOTE

If the pseudo-op TWOSEG is used, the variables
reserved by an array statement must be as-
signed to the low segment only; thus, a VAR
pseudo-op is required after a RELOC back to
the low segment.

Version 47 June 1972

2-16



-213- MACRO

2.5.7 VAR Statements

VAR J

This statement causes symbols which have been defined by suffixing
with the # sign (array and integer pseudo-ops) in previous state-
ments to be assembled as block statements. This has no effect on
subsequent symbol definitions of the same type.

If the LIT and VAR statements do not appear in the program, all
literals and variables are stored at the end of the program.

2.5.8 BLOCK Statements

To reserve a block of locations, the BLOCK operator is used. It
is followed by a single operand, which may be a number or an ex-
pression in the current radix, indicating the number of words to

be reserved. The assembler increments the location counter by
the value of the operand. For example,

MATRIX: BLOCK N*M J

reserves a block of N*M words starting at MATRIX for an array
whose dimensions are M and N.

BLOCK is used to reserve words in a specific order; remember that
data words should be stored in the low segment in two-segment pro-
grams .

2.5.9 END Statements

The END statement must be the last statement in every program. A
single operand may follow the END operator to specify the address
of the first instruction to be executed. Normally this operand is
given only in the main program; since subprograms are called from
the main program, they need not specify a starting address.

END START> start is the label at the starting address

When the assembler first encounters an END statement, it terminates
pass 1 and begins pass 2. The END also terminates pass 2, after which

Version 47 j UNE 1972

2-17



MACRO
~244~

the assembler automatically assembles all previously defined vari-

ables and literals starting at the current location.

*

The following processing operations can be performed at any point

in the program.

2.5.10 LIT Statements

LIT J

This statement causes literals that have been previously defined to

be assembled, starting at the current location. If n literals have

been defined, the next free storage location will be at location

counter plus n. Literals defined after this statement are not af-

fected.

If a LIT statement does not appear before the END statement, the

literals are XLISTed (refer to paragraph 2.6.3 ). If the output

of literals is desired, the LIT pseudo-op should appear immediately

before the END statement.

NOTE

In a two-segment program LIT must be given
in the high segment. The END statement must
also be given in the high segment or the
literals will go to the low segment.

2.5.11 Multi-Program Assembly

The pseudo-op PRGEND is used to compress many small files into one

large file to save space and disk lookups. This pseudo-op has the

form PRGEND^ . PRGEND allows multiprogram assemblies, and is used

for assembling library files (LIB4 0) in which all programs are very

short. PRGEND takes the place of all but the last END statement.

The output is a binary file which can be loaded in search mode. The

use of PRGEND costs assembler space since the symbol tables, literal

tables and titles of each of the small files (i.e., programs) involved

must be saved at the end of pass 1. Also, since PRGEND is function-

ally an END statement, macros cannot be used over it (i.e., macros

cannot generate PRGEND as part of their expansions)

.

*The END statement is also used to specify a transfer word in some
output file formats. (See Section 6.2.2.4.)

Version 47 JuNE 1972
2-18



"2Z,5-
MACRO

If the LIT and VAR, statements do not appear in the programs, all
.literals and variables are stored at the end of the program.

2.5.12 PASS2 Statements

PASS2 )

This statement switches the assembler to pass 2 processing for the
remaining coding. Coding preceding this statement will have been
processed by pass 1 only. This is used primarily for debugging
such as testing macros defined in the pass 1 portion.

2.5.13 PURGE Statements

The PURGE statement is used to delete defined symbols. Its general
form is:

PURGE symbol, symbol, symbol J

where each operand is a user-created label, operator, or macro
call which is to be deleted from the assembler's tables. The PURGE
statement is normally used at the end of programs to conserve stor-age and to delete symbols for DDT. Purged symbol table space isreused by the assembler.

ZnTrT^" USSS '^ SamS Symb01 f°r b°th a ™«° «U -d/orOPDEE (refer to Section 2.8.2, and for a label, a PURGE statement
deletes the macro call or OPDEF. A repeat of the symbol in thePURGE statement also purges the label. For example, the following
statement purges both:

PURGE SOLV, SOLV J

The first SOLV purges the macro call; the second SOLV purges the
label.

2.5.14 XPUNGE Statements

The XPUNGE pseudo-op deletes all local symbols during pass 2; it
has the form:

XPUNGE J
Version 47

June 1972
2-19



-246-
MACRO

I
The use of this pseudo-op reduces the size of the REL file and

jspeeds up loading (especially of DDT). XPUNGE should be placed

ijust prior to the END statement.

2.5.15 Linking Subroutines

Programs usually consist of subroutines which contain references ...

to symbols in external programs. Since these subroutines may be

assembled separately, the loader must be able to identify "global"

symbols. For a given subroutine, a global symbol is either a

symbol defined internally and available for reference by other

subroutines, or a symbol used internally but defined in another

subroutine. Symbols defined within a subroutine, but available to

others, are considered internal. Symbols which are externally

defined are considered external.

These linkages between internal and external symbols are set up by

declaring global symbols using the operators EXTERN, INTERN, or

ENTRY. The double colon (::) may also be used.

2.5.15.1 EXTERN Statements - The EXTERN statement identifies symbols

which are defined elsewhere. The statement,

EXTERN SQRT, CUBE, TYPE;

declares three symbols to be external. External symbols must not

be defined within the current subroutine. These external references

may be used only as an address or in an expression that is to be

used as an address. For example, the square root routine declared

above might be called by the statement,

PUSHJ P,SQRT J

External symbols may be used in the same manner as any other re-

locatable symbol. Examples:

EXTERN A

P00 300 00000 3* I^OVF. 6*A+3

000003* 000000* XWD A +3*

A

777777 77777 1 b= A-7
OHDET UCXWD B+3>A-b3

777774* 777773* t>

June 1972
Version 47

2-20



-247- MACRO

The external symbols are flagged with asterisks. There are three
restrictions for the use of external symbols:

a. Externals may not be used in LOC and RELOC state-
ments.

b. The use of more than one external in an expression
is not permitted. Thus, A+B (where A and B are both
external) is illegal.

c. Globals may only be additive; therefore, the follow-
ing are illegal

-A EXP-A
2*A 2*A-A

An alternative method for generating external symbols is to use a

double pound sign (##) following the symbol name. This method
eliminates specifying the EXTERN statement. For example,

MOV 0,JOBREL##

is equivalent to

EXTERN JOBREL
MOVE 0, JOBREL

2.5.15.2 INTERN Statements - To make internal program symbols avail-
able to other programs as external symbols, the operators INTERN
or ENTRY are used. These statements have no effect on the actual
assembly of the program, but will make a list of symbol equivalences
available to other programs at load time. The statement,

INTERN MATRIX J

makes the subroutine MATRIX available to other programs. An internal
symbol must be defined within the program as a label, variable, or

by direct assignment.

2.5.15.3 ENTRY Statements - Some subroutines have common usage, and
it is convenient to place them in a library. In order to be called
by other programs, these library subroutines must contain the state-
ment,

ENTRY NAME J

Version 47 j UNE 1972

2-21



MACRO
-2^8"

where "name" is the symbolic name of the entry point of the lib-

rary subroutine.

ENTRY is equivalent to INTERN with the following additional feature.

All names in a list following ENTRY are defined as internal symbols

and are placed in a list at the beginning of the library of subrou-

tines. If the loader is in library search mode, a subroutine will

be loaded if the program to be executed contains an undefined global

symbol which matches a name on the library ENTRY list.

If the MATRIX subroutine mentioned before is a library subroutine,

it must contain the statement,

ENTRY MATRIX J

Since library subroutines are external to programs using them, the

calling program must list them in EXTERN statements.

2.6 SUPPRESSION OF SYMBOLS

When a parameter file is used in assemblies, many symbols get

defined but are never used. Unused defined symbols take up space

in the binary file and complicate listings of the file. Unused

and unwanted symbols may be removed from symbol tables by the use

of a pseudo-op, either SUPPRESS or ASUPRESS. These pseudo-ops

control a suppress bit in each location of the symbol table; if

a suppress bit is on, the symbol in that location is not output.

The suppress bit is used in the file S.MAC so that if a bit is on

and the symbol in that location is not used later, the symbol is

not output in the CREF table.

2.6.1 SUPPRESS SYMBOL Statement

The SUPPRESS statement turns on the suppress bit for the specified

symbols.

2.6.2 ASUPPRESS Statement

The ASUPPRESS statement turns on the suppress bit for all the symbols

in the symbol table.

Version 47 JuNE 1972

2-22



-249- MACRO

2.6.3 Listing Control Statements

Program listings are normally printed on a line printer or a terminal
depending on the listing file device specified. Listings are

printed as the source program statements are processed during pass 2.

A sample listing is shown in Chapter 7.

From left to right the standard columns of a listing contain

a) the location counter,

b) the instruction or data in octal form, and

c) the symbolic instruction or data followed by
comments.

Relocatable object-code addresses are suffixed by a single quotation
mark (') which may occur in either the left or right half.

Data is displayed in one of several modes depending on the state-

ment format. The possible statement formats are:

1) HaIfword

2) Instruction

3) Input/Output

4) Byte pointer

5) ASCII

6) SIXBIT

- two 18-bit bytes

- a 9-bit op-code, 4-bit
accumulator code, 1-bit
indirect bit, 4-bit index,
and an 18-bit address seg-
ment

- 3-bit I/O indicator, 7-bit
I/O device specification,
3-bit operand, 1-bit indirect
address bit, 4-bit index and
an 18-bit address segment

- 6-bit byte position, 6-bit
byte size, 1 unused bit,
1-bit indirect address bit,
4-bit index and an 18-bit
address segment

- 5 Seven-bit bytes

- 6 six-bit bytes.

NOTE

Refer to the DECsystem-10 System Reference
Manual for a complete description of word
formats

.

The listing function is suppressed within macro expansion, therefore
only the macro call and any succeeding lines that generate code are

June 1972

2-23

Version 47



MACRO
-250-

listed. Line printer listings always begin at the top of a page

and up to 55 lines are printed on each page. Consecutive page

numbers are printed in the upper right-hand corner of each page.

Each page also contains a title and a subtitle.

The standard listing operations can be augmented and modified by

using the following listing control statements.

STATEMENT DESCRIPTION

PAGE J

XLIST J

LIST ^

LALL J

XALL J

SALL J

NOSYM J

This statement causes the assembler to skip

to the top of the next page. (A form feed
character in the input text has the same
effect and is preferred.

This statement causes the assembler to stop

listing the assembled program. The listing
printout actually starts at the beginning of

pass 2 operations. Therefore, to suppress
all program listing, XLIST must be the first
statement in the program. If only a part of

the program listing is to be suppressed,
XLIST is inserted at any point to stop list-

ing from that point. Literals are XLISTed
if no LIT statement is seen before the END

statement.

Normally used following an XLIST statement
to resume listing at a particular point in

the program. The LIST function is implicitly
contained in the END statement.

This statement causes the assembler to list

everything that is processed including all

text, macro expansions and list control
codes suppressed in the standard listing.

Normally used following a LALL statement to

resume standard listing.

This causes suppression of all macro and re-

peat expansions and their text; only the in-

put file and the binary generated will be

listed. SALL can be nullified by either XALL
or LALL and the /M switch can be used instead
of SALL.

The assembler normally prints out the symbol
table at the end of the program, but the

NOSYM statement suppresses the symbol table
printout.

Version 47 June 1972

2-24



STATEMENT

-251- MACRO

DESCRIPTION

TAPE J This pseudo-op causes the assembler to begin
assembling the program contained in the next
source file in the MACRO command string. For
example

,

.R MACRO
' *DSK:BINAME,LPT:«-TTY:,DSK:MORE
PARAM=6
TAPE
;THIS COMMENT WILL BE IGNORED
tz

would set the symbol PARAM equal to 6 and then
assemble the remainder of the program from the
source file DSK:MORE. Since MACRO is a 2-pass
assembler, the TTY: file would probably be re-
peated for pass 2.

END OF PASS 1

PARAM=6
TAPE
+ Z

Note that all text after the TAPE pseudo-op
is ignored.

PRINTX MESSAGE^ This statement, when encountered, causes the
single operand following the PRINTX operator
to be typed out on the TTY. This statement
is frequently used to print out conditional
information. PRINTX statements are also used
in very long assemblies to report the progress
of the assembler through pass 1.

REMARK COMMENTS)on pass 1 the message is printed on both the
list device and TTY. On pass 2 it is printed
on the TTY, but only if it is not the list
device.

COMMENT^

Version 47

The REMARK operator is used for statements
which contain only comments. Such statements
may also be started with a semi-colon.

This pseudo-op treats the text between the
first non-blank character (delimiter) and the
next occurrence of the same character as a
comment. If the first occurrence of the
delimiter is a right (left) angle bracket,
the next occurrence of the delimiter must also
be a right (left) angle bracket. The text
may include the carriage return, line feed
sequence. For example,

COMMENT/THIS IS A COMMENT
THAT IS MORE THAN ONE LINE LONG
/

Internally, the pseudo-op functions as ASCII,
but no binary is produced.

June 1972

2-25



MACRO -252-

2.7 CONDITIONAL ASSEMBLY

Parts of a program may be assembled, or not assembled, on an optional

basis depending on conditions defined by an assembler IF statement.

The general form is,

IP N, < >

where the coding within angle brackets is assembled only if the

first operand, N, meets the statement requirement.

The IF statement operators and their conditions are listed below:

Operator Assemble angle-bracketed coding IF:

IPE N, <...> N=0, or blank
IPG N, <• . •> N>0
IFGE N, <. . .> N=0, or N>0
IPL N } <. . .> N<0
IFLE N, <...> N=0, or N<0
IPN N, <. . .> N^O
IF1, <...> encountered during pass 1
IF2, <...> encountered during pass 2

In the following conditional statements, assembly depends on whether

or not a symbol has been defined. The coding enclosed in angle

brackets is assembled if,

IFDEF SYMBOL, <...> this symbol is defined
IFNDEF SYMBOL, <...> this symbol is not defined

I

NOTE

SYMBOL can be an op-code or pseudo-op as
well as a user symbol.

The following conditional statements operate on character strings.

Arguments are interpreted as 7-bit ASCII character strings, and

the assembler makes a logical comparison, character-by-character

to determine if the condition is met.

The coding within the third set of angle brackets is assembled if

the character strings enclosed by the first two sets of angle brackets

IFIDN <A-Z> <A-Z>, <...>. (1) are identical
IFDIF <A-Z> <A-Z>,<...> (2) are different

Version 47 June 1972

2-26



.253- MACRO

These statements, IFIDN and IFDIF, are usually used in macro expan-

sions (see Chapter 3) where one or both arguments are dummy vari-

ables.

An alternate form is to use delimiters as in ASCII. For example:

IFDIF/A-Z/"A-Z' ,< >

This allows the use of > inside the character string. If the first

non-blank (space or tab) character is a < character, then the < >

method is used? otherwise, the character is used as a delimiter.

The last pair of conditional statements is followed by a single

bracketed character string, which is either blank or not blank,

and which is followed by conditional coding in brackets.

The coding enclosed in the second set of angle brackets is as-

sembled if,

IFB <...>,<....> the first operand is blank
IFNB <...>,< > the first operand is not blank

A blank field is either an empty field or a field containing only

the ASCII characters space (40
g

) or tab dig)

•

Again, delimiters can be used as in

IFB / /,< >

2.8 ASSEMBLER CONTROL STATEMENTS

2.8.1 REPEAT Statements

The statement

REPEAT N } <. . •> J

causes the assembler to repeat the coding enclosed in angle

brackets n times. If more than one instruction or data word is

to be repeated, each is delimited by a carriage return. For

example,

ADDX: REPEAT 3, <ADD 6,X(4)*>
ADDI 4 } 1>J

Version 47 June 1972

2-27



MACRO -254-

assembles as,

ADDX; ADD 6,(4)
ADDI 4,1
ADD 6,X(4)
ADDI 4,1
ADD 6,X(4)
ADDI 4,1

Notice that the label of a REPEAT statement is placed on the first
line of the assembled coding. REPEAT statements may be nested to
any level. The following simplified example shows how a nested
REPEAT statement is interpreted.

REPEAT 3,<Aj
REPEAT 2,<BJ»

1)>J

assembles as,

A.

B*

C-

B"

C.

-D
"A

B"

C.
B"

C

.D

"A.

NOTE

Brackets indicate repetition,

2.8.2 OPDEF Statements

The programmer can define his own operators using an OPDEF state-
ment, which is written in the form:

OPDEF SYM [STATEMENT]

where the first operand is defined as an operator, whose function
is defined by the second operand, which is enclosed in square
brackets. The second operand is evaluated as a statement, and the

Version 47 June 1972

2-28



-255- MACRO

result is stored in a 36-bit word. For example,

' OPDEP CAL1 1030000 0000001

defines CAL1 as an operator, with the value 030000 000000. CALl

may now be used as a statement operator.

0301^0 001234 CALl 3,1234

which is equivalent to,

030140 001234 ,Z 3,1234(30000)

When MACRO-10 encounters a user-defined operator, it assembles a

single object-program storage word in the format of a primary in-

struction word (see Chapter 1). The defined 36-bit value is modi-

fied by accumulator, indirect, memory address and index fields as

specified by the user-defined operator.

For example,

OPDEP- CAL [MOVE 1,@SYM(2)]J
CAL 1,B0L(2)J

The CAL statement is equivalent to:

MOVE 2,@SYM+BOL(4)^

In this modification the accumulator fields are added, the indirect

bits are logically ORed, the memory address fields are added,

and the index register addresses are added'.

2.8.3 SYN Statements

The statement

SYN symbol, symbol

defines the second operand as synonymous with the first operand,

which must have been previously defined. Either operand may be a

symbol or a macro name. If the first operand is a symbol, the

second is defined as a symbol with the same value. If the first is

Version 47 June 1972

2-29



MACRO -256-

a macro name, the second becomes a macro name which operates identi-

cally. If the first is a machine, assembler, or user-defined opera-

tor,, the second will be interpreted in the same manner. If the

first operand in a SYN statement has been previously defined as

both a label and as an operator, the second operand is synonymous

with the label.

The following are legal SYN statements:

SYN K,X^
SYN FAD, aDDJ
SYN END,XENDJ

IF K-5, X=5

2.8.. 4 Extended Instruction Statements

For programming convenience, some extended operation codes are pro-

vided in the MACRO-10 Assembler. Primarily, these are used to re-

place those DECsystem-10 instructions where the combination of

instruction mnemonic and accumulator field is used to denote a

single instruction. For example:

JRST 4

is equivalent to a halt instruction. In addition, they are used

to replace certain commonly used I/O instruction-device number

combinations.

The extended instruction statements are exactly like the primary

instruction statements or I/O instruction statements, except that

they may not have an accumulator field or device field.

The operator field must have one of the following extended mnemonics:

Equivalent
Extended Machine
istructions Instructions

JEN JRST 12,

HALT JRST 4,
JRSTF JRST 2,
JOV JFCL 10,
JCRY0 JFCL 4,
JCRY1 JFCL 2.

JCRY JFCL 6,
JFOV JFCL 1,
RSW DATAI

Meaning

Jump and enable the PI (priority interrupt)
system
Halt
Jump and restore flags
Jump on overflow and clear
Jump on CRY0 and clear
Jump on CRY1 and clear
Jump on CRY0 or CRY1 and clear
Jump on floating overflow
Read the console switches

June 1972

2-30



-257- MACRO

2.9 MULTI-FILE ASSEMBLY

2.9.1 UNIVERSAL Name

UNIVERSAL files may be used to generate data, however, they are

normally used to generate symbols, macros and opdef's (user-

defined operators) . The symbols generated by UNIVERSAL files need

not be declared as INTERNAL symbols since all local symbols in

files of this type are made available to all programs permitted

access to the file.

UNIVERSAL files used to generate data can save time by being set

up for a one-pass operation since symbol definition needs to be

assembled on one pass only. This one-pass operation can be ac-

complished in either of two ways:

1) UNIVERSAL NAME
PASS 2

END

2) UNIVERSAL NAME
IF '2, <END>

END

The first generates a listing; the second does not.

If the UNIVERSAL pseudo-op is seen in a program, the NAME is stored

in a table and a flag is set. When the END statement is seen, the

symbol table is moved to just after the pushdown stacks and buffers;

therefore, the pushdown stacks and buffers cannot be increased during

assembly. The first assembly should use the maximum of I/O devices

to be used later. The free core pointer is moved to after the top of

the moved symbol table, and pointers are stored to enable the table

to be scanned.

When assembling is done from indirect files, the universal files must

be recompiled by the /COMPIL switch. Otherwise if a REL file later

than the source exists, the universal file will not be compiled,

and the symbol table will not be available. In addition, if the

universal routine is modified, all routines which use it must be

recompiled by either using /COMPIL or deleting all REL files.

Version 47 Juw= 1972

2-31



MACRO -258-

2.9.2 SEARCH Name

The SEARCH statement opens the specified symbol table for MACRO
to scan if the required symbol is not found in the current symbol
table. Multiple symbol tables may be specified by separating them
with commas; they are searched in the order specified. A maximum
of ten symbol tables may be specified since each name requires
four words of core. This maximum may be redefined with the symbol
.UNIV in MACRO.

When the SEARCH pseudo-op is seen, the specified names are com-
pared with the UNIVERSAL table. If the specified names cannot be
found, the message

CANNOT FIND UNIVERSAL name

is output. If the specified names are found, a table of searching
sequence is built. This sequence is to search the universal symbol
tables in the order specified whenever a symbol is not found in

the current symbol table. This search is to continue until the
symbol is found or all the tables have been searched. When a symbol
is found in an auxiliary symbol table, it is moved into the current
symbol table. This procedure saves time on future references at
the expense of core.

Universal files may search other universal files as long as all
names in the search list have been assembled. The table of universal
names is cleared on each RUN or START, but is not cleared when MACRO
responds with an asterisk.

Version 47 June 1972

2-32



-259- MACRO

Chapter 3
Macros

When writing a program, certain coding sequences are often used

several times with only the arguments changed. If so, it is conveni-
ent if the entire sequence can be generated by a single statement.
To do this, the coding sequence is defined with dummy arguments as

a macro instruction. A single statement referring to the macro by

name, along with a list of real arguments, generates the correct
sequence.

3.1 DEFINITION OF MACROS

The first statement of a macro definition must consist of the opera-
tor DEFINE followed by the symbolic name of the macro. The name must
be constructed by the rules for constructing symbols. The macro
name may be followed by a string of dummy arguments enclosed in par-
entheses. The dummy arguments are separated by commas and may be

any symbols that are convenient—single letters are sufficient. A
comment may follow the dummy argument list.

The character sequence, which constitutes the body of the macro, is

delimited by angle brackets. The body of the macro normally consists
of a group of complete statements-

Version 47 June 1972

3-1



MACRO
"26°-

For example, this macro computes the length of a vector:

DEFINE VMAG CA.B) ; ROUTINE FOR THE LENGTH OF A VECTOR

<MOVE 0,A ^GET THE FIRST COMPONENT

FMP * ; SQUARE IT

MOVE 1 A+l ;«ET THE SECOND COMPONENT

FMP 1,1 i SQUARE IT

FAD i' ;ADD THE SQUARE OF THE SECOND

MOVE 1 A+2 ;GET THE THIRD COMPONENT

FMP 1,1 ; SQUARE IT

FA n 1 ;^D THE SQUARE OF THE THIRD

JSR FSQRT ;USE THE FLOATING SQUARE ROOT ROUTINE

MOVEM B ; STORE THE LENGTH>

NOTE

Storing comments in a macro takes up space.

If the comments start with a double semi-

colon (;;) the comment will not be stored;

therefore, it lists in the original defini-

tion but does not list when the macro is

expanded.

3.2 MACRO CALLS

A macro may be called by any statement containing the macro name fol-

lowed by a list of arguments. The arguments are separated by commas

and may be enclosed with parentheses. If parentheses are used (in-

dicated by an open parenthesis following the macro name) ,
the argu-

ment string is ended by a closed parenthesis. If there are n dummy

arguments in the macro definition, all arguments beyond the first n,

if any, are ignored. If parentheses are omitted, the argument

string ends when all the dummy arguments of the macro definitions

have been assigned, or when a carriage return or semicolon delimits

an argument

.

The arguments must be written in the order in which they are to be

substituted for dummy arguements . That is, the first argument is

substituted for each appearance of the first dummy argument; the

second argument is substituted for each appearance of the second

dummy arguemnt, etc. For example the appearance of the statement:

VMAG VEC, LENGTH

in a program generates the instruction sequence defined above for

the macro VMAG. The character string VECT is substituted for each

occurrence in the coding of the dummy argument A, and the character

string LENGTH is substituted for the single occurrence of B in the

coding.

Version 47 3-2 June 1972



-261- MACRO

Statements with a macro call may have label fields. The value of the

label is the location of the first instruction generated.

CAUTION

MACRO arguments are terminated only by COMMA,

CARRIAGE RETURN, SEMICOLON or CLOSE PAREN-

THESIS (when the entire argument string was

started with an open parenthesis) .
These

characters may not be included in arguments

unless- <> are used. Specifically, spaces or

tabs do not terminate arguments; they will

be treated as part of the argument itself.

The symbol does not terminate arguments, it

just permits commas and other symbols to be

used as part of an argument.

3.3 MACRO FORMAT

a Arguments must be separated by commas. However, arguments

may also contain commas. For example:

DEFINE JFQ(A,B,C)
<MOVE [A]
CAMN B
JRST C>

If the data in location B is equal to A (a literal)
,
the

ir -cnfci uciud
. . b the instruction ADD 2,x,

program jumps to C. It a is -co "« u
M . Hpn

the calling macro instruction would be written

JEQ<ADD 2,X>,B,INSTX

The angle brackets surrounding the argument are removed,

and the proper coding is generated.

n i ~ -; r. • t-f an arcrument contains commas, semi-

^Tons^or any other argu^enr SSSiter. , the argument must

be enclosed in angfe brackets . For every level of nesting,
be enclosed in any

removed; therefore, to pass

araumentfcontaining commas to nested -acres the argument

S™Td be enclosed by one set of angle brackets for each

!evel of nesting? The > does not terminate the argument,

a comma must be used,

b. A macro need not have arguments. The instruction:

DATAO PIP,PUNBUF(4)

which causes the contents of PUNBUF, indexed by register 4,

S be punched on paper tape, may be generated by the macro:

DEFINE PUNCH
<DATAO PIP,PUNBUF(4)>

The calling macro instruction could be written:

PUNCH

Version 47 JuNE 1972

3-3



MACRO -262-

o™the
C
macro

f°r ^ DATA° instruction contained in the body

c. The macro name, followed by a list of arguments, may appearanywhere in a statement. The string within the anglebrackets of the macro definition exactly replaces the macroname and argument string. For example:

DEFINE L(A,B)<3«<B-A+1>>

gives an expression for the number of items in a -table where
Tf

T
tL

WO
f^t,

ar
t

USed
5° St°re SaCh item

'
A is the address

?o Intel ^ J ' ^ B iS the address °f the last item.

can^cSl^S f^iSws
6

:

^ ^^ ^^ ^ Mc»>

T40VEI X,L(PIRST,LAST)

3 . 4 CREATED SYMBOLS

When a macro is called, it is often convenient to generate symbols
without explicitly stating them in the call, for example, symbols
for labels within the macro body. If it is not necessary to refer
to these labels from outside the macro, there is no reason to be
concerned as to what the labels are. Nevertheless, different sym-
bols must be used for the labels each time the macro is called.
Created symbols are used for this purpose.

Each time a macro that requires a created symbol is called, a symbol
xs generated and inserted into the macro. These generated symbols
are of the form. .hijk, that is, two decimal points followed by four
digits. The user is advised not to use symbols starting with two
points. The first created symbol is ..0001, the next is ..0002,
etc.

If a dummy symbol in a definition statement is preceded by a percent
sign (%), it is considered to be a created symbol. When a macro is
called, all missing arguments that are of the form %X are replaced
by created symbols. However, if there are sufficient arguments in
the calling list that some of the arguments are in a position to be
assigned to the dummy arguments of the form %X, the percent sign is
overruled and the stated argument is assigned in the normal manner.

Null arguments are not considered to be the same as missing argu-
ments. For example, suppose a macro has been defined with the
dummy string:

(A,*B,*C)

Version 47
3-4 June 1972

11. 4' BBS.,*! Mi* t i 'law mi



-263- MACRO

If the macro were called with the argument string:

(OPD, ) or OPE),,

The second argument would be considered to have been declared as

null string. This would override the % prefixed to the second dummy

argument arid would substitute the null string for each appearance of

the second dummy argument in the statement. However, the third ar-

gument is missing. A label would be created for each occurrence of

%C. For example:

DEFINE TYPE(A,#B)
<JSR TYPEOUT
JRST %B
SIXBIT/A/
%B:>

This macro types the text string substituted for A on the console

Teletype. TYPEOUT is an output routine. Labeling the location fol-

lowing the text is appropriate since A may be text of indefinite

length. A created symbol is appropriate for this label since the

programmer would not normally reference this location. This macro

might be called by:

TYPE HELLO

which would result in typing HELLO when the assembled macro is ex-

ecuted. If the call had been:

TYPE HELLO, BX

the effect would be the same. However, BX would be substituted for

%B, overruling the effect of the percent sign.

3.5 CONCATENATION

The apostrophe character or single quote (') is defined as the con-

catenation operator. A macro argument need not be a complete symbol

Rather, it may be a string of characters which form a complete sym-

bol or expression when joined to characters already contained in the

macro definition. This joining, called concatenation, is performed

by the assembler when the programmer writes an apostrophe between

the strings to be so joined. As an example, the macro:

DEFINE J(A,B,C)
<JUMP'A B,C>

When called, the argument A is suffixed to JUMP to form a single sym-

bol. If the call were:

Version 47 June 1972

3-5



MACRO -264-

J (LE,3,X+1)

the generated code would be:

JUMPLE 3,X+1

The concatenation (') may be used in nested macros. The assembler

removes one operator when it performs concatenation if it is next

to (before or after) a dummy argument.

3.6 DEFAULT ARGUMENTS

Missing arguments in macros are generally replaced by nulls. For

example, the macro

DEFINE POO (A,B,C)>
EXP A 5 B,C>

when called by F00(1) would generate three words of 1, 0, and 0.

Default arguments may be supplied to override missing arguments.

When supplied, default arguments are written within angle brackets

(<>) after each argument. For example, the addition of default ar-

guments 222 and 333 to arguments B and C of the foregoing example

macro would be written as

DEFINE F00 (A,B<222>, <<333>)
EXP A,B,C>

If the foregoing macro is called by F00(1) it would generate the

number 1,222,33 3.

The following example program illustrates the use of defined default

I
arguments

.

Version 47 j une 1972

3-6



-265- MACRO

|

.MAIN
'poo

>)<

MACRO 47(113) 10:14 28-MAR-72 PAGE 1
MAC 28-MAR-72 10:13

000001
12

000005

000000 000001

11

5222
000000 000333

NO ERRORS DETECTED

PROGRAM BREAK IS

2K CORE USED

DEFINE POOl (A,B,C)<
EXP A,B,C>
DEFINE F002 (A<111> ,B<222> ,C<333

EXP A,B,C>

FOOl (l)f
EXP1,,+

F002 (l)f
EXP 1,222,333+

END

3.7 INDEFINITE REPEAT

It is often convenient to be able to repeat a macro one or more times

for a single call, each repetition substituting successive arguments

in the call statement for specified arguments in the macro. This may
be done by use of the indefinite repeat operator, IRP. The operator
IRP is followed by a dummy argument, which may be enclosed in paren-

theses. This argument must also be contained in the DEFINE -state-

ment's list. This argument is broken into Subarguments . When the

macro is called, the range of the IRP is assembled once for each

subargument, the successive subarguments being substituted for each

appearance of the dummy argument within the range of the IRP. For

example, the single argument:

<ALPHA , BETA , GAMMA

>

consists of the subarguments ALPHA, BETA, and GAMMA. The macro de-

finition:

DEFINE DOEACH(A),
<IRP A
<A>>

and the call:

DOEACH<ALPHA , BETA , GAMMA

>

produce the following coding:

ALPHA
BETA
GAMMA

Version 47 3-7 June 1972



MACRO -266-

An opening angle bracket must follow the argument of the IRP state-

ment to delimit the range of the IRP since the argument is one ar-

gument to the macro. A closing angle bracket must terminate the

range of the IRP. IRPC is like IRP except it takes only one charac-

ter at a time; each character is a complete argument. An example of

a program that uses an IRPC is given in Chapter 7, Figure 7-4.

It is sometimes desirable to stop processing an indefinite repeat

depending on conditions given by the assembler. This is done by the

operator ST0P1. When the ST0P1 is encountered, the macro processor

finishes expanding the range of the IRP for the present argument

and terminates the repe;at action. An example:

DEFINE CONVERT (A)
<IRP A<IFE K-A,<STOPI
C0NV1 A>>

Assume that the value of K is 3 : then the call:

CONVERT 0,1,2,3,4,5,6,7

<IRP
IPE K-0,<STOPI
C0NV1 0>
IPE K-1,<ST0P1
C0NV1 1>
IFE K-2,<ST0PI
C0NV1 2>
IFE K- 3, <STOP

I

C0NV1 3>

The assembly condition is not met for the first three arguments of

the macro. Therefore, the STOPI code is not encountered until the

fourth argument, which is the number 3. When the condition is met,

the STOPI code is processed which prevents further scanning of the

arguments. However, the action continues for the current argument

and generates C0NV1 3, i.e., a call for the macro C0NV1 (defined

elsewhere) with an argument of 3.

3.8 NESTING AND REDEFINITION

Macros may be nested; that is, macros may be defined within other

macros. For ease of discussion, levels may be assigned to these

nested macros. The outermost macros, i.e., those defined directly

to the macro processor, may be called first level macros. Macros

Version 47 June 1972

3-8



-267- MACRO

defined within first level macros may be called second level macros;

macros defined within second level macros may be called third level

macros; etc.

At the beginning of processing, first level macros are known to the

macro processor and may be called in the normal manner. However,

second and higher level macros are not yet defined. When a first

level macro containing second and higher level macros is called,

all its second level macros become defined to the processor. There-

after, the level of definition is irrelevant, and macros may be

called in the normal manner. Of course, if these second level

macros contain third level macros, the third level macros are not
defined until the second level macros containing them have been
called.

When a macro of level n contains a macro of level n+1, calling the

macro results in generating the body of the macro into the user's

program in the normal manner until the DEFINE statement is encoun-

tered. The level n+1 macro is then defined to the macro processor;
it does not appear in the ueer's program. When the definition is

complete, the macro processor resumes generating the macro body in-

to the user's program until, or unless, the entire macro has been

generated.

If a macro name which has been previously defined appears within

another definition statement, the macro is redefined, and the ori-

ginal definition is eliminated.

The first example of a macro calculation of the length of a vector
may be rewritten to illustrate both nesting and redefinition.

DEFINE VMAG (A,B,#C)
<DEFINE VMAG (D,E)
<JSP SJ,VL
EXP C,E>
VMAG (A,B)

JRST %C
VL: HRRZ 2, (SJ)

MOVE (2)
PMP
MOVE 1,1(2)
PMP 1,1
PAD 1

MOVE 1,2(2)
PMP 1,1
PAD 1

JSR FSQRT
MOVEM @1 (SJ)
JRST 2(SJ)

Version 47° "

3-9 j UNE 1972



MACRO -268-

The procedure to find the length of a vector has been written as a

closed subroutine. It need only appear once in a user's program.

From then on it can be called as a subroutine by the JSP instruction.

The first time the macro VMAG is called, the subroutine calling se-

quence is generated followed immediately by the subroutine itself.

Before generating the subroutine, the macro processor encounters a

DEFINE statement containing the name VMAG. This new macro is de-

fined and takes the place of the original macro VMAG. Henceforth,

when VMAG is called, only the calling sequence is generated. However,

the original definition of VMAG is not removed until after the ex-

pansion is complete.

Another example of a nested macro is given in Chapter 7, Figure 7-4.

3.8.1 ASCII Interpretation

If the reverse slash (\) is used as the first character of an argu-

ment in a macro call, the value of the following symbol is converted

to a 7-bit ASCII character in the current radix. If the call is

MAC \A

and if A=500 (in the current radix) , this generates the three ASCII

character "500".

Version 47 June 1972

3-10



-269- MACRO

Chapter 4
Error Detection

MACRO- 10 makes many error checks as it processes source language
statements. If an apparent error is detected, the assembler prints
a single letter code in the left-hand margin of the program listing
(and on the TTY, unless the listing is on the TTY) , on the same line
as the statement in question.

The programmer should examine each error indication to determine
whether or not correction is required. At the end of the listing,
the assembler prints a total of errors found; this is printed even
if no listing is requested.

Each error code indicates a general class of errors. These errors,
however, are all caused by illegal usage of the MACRO-10 language,
as described in the preceding three chapters of this manual.

4.1 SINGLE-LETTER ERROR CODES

Table 4-1 lists the single-letter error codes output by the assem-
bler.

Vers,on *7
June 1972

4-1



MACRO -270-

TABLE 4-1

Error Codes

Error Code Meaning Explanation

A Argument error in This is a broad class of errors
pseudo-op which may be caused by an impro-

per argument in a pseudo-op.

The following represent the ;

majority of the conditions which
would cause an A code error.

a. Symbol used is improperly
formed. For example AB?CD
would result in an A code
since the character ? is
not in the Radix 50 charac-
ter set.

b. IFIDN comparison string is

too large.

c. OPDEF of macro is SYN,

.

d. OPDEF, no code generated.

e. Invalid SIXBIT character
in SIXBIT/TEST Tab/

f. Byte size too big in byte
(>4D36)

.

g. Radix 50 code not absolute,
that is Radix 50 FOO,BAR
where FOO is not 0-74 ab-
solute.

h. End of line on IFx SYM
reached before an < char-
acter is seen.

i. Assignment made in an ad-
dress field (e.g., MOVE
A=10)

.

j . Assignment of a label
(e.g. , TAG: TAG=1)

.

k. Missing symbol in SYN SYMl,.

1. Unknown symbol in SYN,.

m. Missing right parenthesis
()) in index (e.g., MOVE
1,(2...).

n. Missing left parenthesis
in BYTE statement (e.g.,
BYTE 3 1,1,1).

o. No comma after repeat count
(e.g. , REPEAT 3 <)

.

p. IRP not in a macro.

Version 47 June 1972

4-2



TABLE 4'

-271-

1 (Cont)

MACRO

Error Code Meaning

Multiply-defined
symbolic reference
error

External symbol
error

Explanation

q. Argument for IRP is not a
dummy symbol; for example

DEFINE POO (A) <

IRP(B), <>>

r. IRP argument is a created
symbol.

s. ST0P1 not in IRP.

This statement contains a tag
which refers to a multiply-
defined symbol. It is assem-
bled with the first value de-
fined.

Improper usage of an external
symbol. The following repre-
sent the majority of the condi-
tions which will cause an E
code error.

Literal error

Multiply-defined
symbol

Version 47

a. Attempting to use the same
symbol as both an external
and an internal symbol.
For example, the statement
EXT: EXTERN TXT,BRT,EXT
attempts to use EXT as both
an external and an internal
symbol

.

b. Using an external symbol
for an AC or index.

c. Using an external symbol
for IFx.

d. Using an external symbol
in a LOC, RELOC, PHASE,
HISEG or TWOSEG pseudo-op.

e. Using an external symbol
in the left half of IOWD.

f. Using an external symbol
in an ARRAY size statement.

g. Using an external symbol in
a REPEAT count.

A literal is improper. A lit-
eral must generate 1 to 18 words.

EXP [SIXBIT //];N0 CODE GENERATED

A symbol is defined more than
cnce. The symbol retains its
first definition, and the error
message M is typed out during
pass 1.

If this type of error occurs
during pass 2, it is a phase
error (see below)

.

June 1972

4-3



MACRO

Error Code

-272-

TABLE 4-1 (Cont)

Meaning

Number error

Operation code un-
defined

Phase error

Version 47

Explanation

If a symbol is first defined as

a #-sign suffixed tag, and later

as a label, it retains the label

definition.

Examples

:

A: ADD -3,X;
A: MOVE ,C; M ERROR
A: ADD 3,X#;
X: MOVE-.C; X IS ASSIGNED THE

CURRENT VALUE OF THE LOCATION

COUNTER

Multiple appearances of the TITLE

pseudo-op (which generates both

a title line and program name)

are flagged as "M" (Multiple

definition) errors

.

A number is improperly entered.

The following represent the ma-

jority of the conditions which

would cause an N-type error.

a. The number exceeds the per-

mitted range (e.g.,
+F13.33E38)

.

b. A number does not follow a

B shift operator (e»g.,

+D15BZ)

.

c. The number exceeds the cur-

rent radix (e.g., if radix
is 8 the single character
9 is acceptable but the

number 19 is not acceptable)

.

d. The binary shift given does
not represent an absolute
numeric. For example,
4B<sym> is illegal if sym

is relocatable.

e. The character given after
an up arrow (+) is not B, 0,

F, L or D.

f. The expression given after

E was not a signed ( + ) num-

ber.

The operation field of this state-

ment is undefined. It is assem-

bled with a numeric code of 0.

A symbol is assigned a value as

a label during pass 2 different

from that which it received dur-

ing pass 1. In general, the as-

sembler should generate the same

number of program locations in

pass 1 and pass 2, and any dis-

crepancy causes a phase error.

June 1972

4-4



-273- MACRO
TABLE 4-1. (Cont)

Error Code Meaning Explanation

For example , if an assembly con-
ditional, IF1, generates three
instructions, a phase error re-
sults unless another conditional,
such as IF2, generates three pro-
gram locations during pass 2.

Q Questionable This is a broad class of possible
errors in which the assembler
finds ambiguous language.
Q-errors may or may not generate
correct code; the assembler will
attempt to do what the program-
mer intended. The following re-
present the majority of the con-
ditions which would cause a
Q-type error.

a. More than 5 ASCII characters
are detected by the assem-
bler before a closing "

symbol is detected (e.g.,
"ABCDEFG" or "ABC ) . When
more than 5 characters are
detected, only the first 5

are stored.

b. More than 6 SIXBIT charac-
ters are detected by the
assembler before a closing
11 symbol is detected. As
in item a, only the first
6 characters are stored
when more than 6 are de-
tected.

c. A given number is too big;
in such cases, the high-
order bits of the number
are lost.

d. E in a number is followed
by something other than a
signed (+) numeric (e.g.,
1.0TEX) .

e. An illegal control character
is detected in a line.
ASCII characters 0-40 are
not permitted except for HT,
LF, VT, EF, CR and ESC.

f. A comma is detected in a
statement after all of the
required fields have been
filled (e.g., MOVE 1,2,)

g. Relocatable code is gener-
ated by the assembler be-
fore either the pseudo-op
HISEG or TWOSEG is found by
the assembler.

Version H7
June lm

4-5



MACRO -274-

TABLE 4-1 (Cont)

Error Code Meaning

Relocation error

Undefined symbol

Value previously
undefined

Macro definition
error

Explanation

h. An instruction address
pointer is detected by the
assembler which does not
have either all 0's or all
l's in the left half of
its word location.

A LOC or RELOC pseudo-op is used
improperly. All of the following
conditions will cause an R-type
error.

a. An expression or assignment
is made in which relocation
is not or 1 (e.g. , A+B,
A*Z, 1/B, or X=3*B where
a and B are relocatable)

.

b. A BLOCK statement is writ-
ten with a relocatable size
(e.g., BLOCK: A where A is
relocatable)

.

c. A relocatable variable is
used to specify an accumu-
lator (e.g., MOVE A,l where
A is relocatable)

.

A symbol is undefined.

A symbol used to control the as-
sembler is undefined prior to
the point at which it is first
used. Causes error message in
pass 1.

For example, BLOCK: A where A is

undefined.

An error occurred in defining or
calling a macro.

Error messages printed during pass 1 consist of two parts. The page

and sequence number, if used, plus the most recently used label is

printed on the first line. This material is then followed by +n,

where n is the (decimal) number of lines of coding between the la-

beled statement and the statement containing an error. The second

line of the error message is a copy of the erroneous line of coding,

with a letter code in the left-hand margin to indicate the type of

error. If more than one type of error occurs on the same line, more

than one letter is printed; but if the same type of error occurs

more than once in the same line, a single letter code is printed.

Version 47 June 1972

4-6



-275- MACRO

I

During pass 2, as the listing is printed out, lines containing er-
rors are marked by letter codes, and a total of errors found is

printed at the end of the listing.

4.2 ERROR MESSAGES

The following error messages may be typed out on the user <s terminal
Any error message preceded by a question mark (?) is treated as a
fatal error when running under the BATCH processor (the run is ter-
minated by BATCH)

.

END OP PASS 1

LOAD THE NEXT FILE

?COMMAND ERROR

?INSUFFICIENT CORE

?.PDL OVERFLOW, TRY/P

This message indicates that manual
loading is required to start pass
2. This message is issued when
the input is paper tape, cards or
keyboard.

This message indicates that manual
loading is required when the files
to be input are on paper tape,
cards or being input from the
terminal

.

This message indicates that an
error was found in the last com-
mand string input.

Not enough core is available.

This message indicates that the
pushdown list is too small. The
use of a /P switch increases the
size of the pushdown list by 80
locations . As many /P switches
may be used as desired.

The specified device cannot be
initialized because another user
is using it.

These three statements indicate
the number of errors detected by
MACRO during assembly (errors
marked by letter codes on the
listing. Under BATCH if any error
occurs, the run is terminated.

?N0 END STATEMENT ENCOUNTERED ON INPUT FILE
This message is followed by one
of the following:

IN LITERAL
IN DEFINE
IN TEXT
IN CONDITIONAL OR REPEAT
IN CONDITIONAL
IN MACRO CALL

?DEV NOT AVAILABLE

?N ERRORS DETECTED
?1 ERROR DETECTED
NO ERRORS DETECTED

Version 47

4-7
June 1972



MACRO
-276-

and

ON PAGE xxx AT yyy

where xxx = a page number and yyy
= a sequence number or TAG+offset.

NOTE

The foregoing type of message

usually indicates some error

other than a missing END state-

ment. For example:

ASCIZ/TEXT

END

where TEXT has not been closed

or

JRST [statements

7PRGEND ERROR

?T00 MANY UNIVERSALS

END

where the literal has not been

closed.

This error message indicates that

the macro failed to restore the

symbol table for one of the pro-

grams .

This error message indicates that

too many universal programs have

been assembled. The number of

universal programs permitted is a

Macro parameter; to prevent thxs

error from reoccurring, the user

must reassemble macro with a new

parameter which will permit the

desired assembly.

This message indicates that a

search has been made for UNIVERSAL

program xxx but it was not found

(i.e., it was not assembled). To

clear this error the program xxx

must be assembled.

xx>: UNALIGNED DEFINED AS IP EXTERNA^ ^^ indlcates that an

undefined symbol was found and

that it has been treated as if it

was an external symbol.

? CANNOT FIND UNIVERSAL xxx

PROGRAM BREAK IS xxx

HI-SEG BREAK IS xxx

Version 47

Where xxx is the length of the Iqw

segment.

Where xxx is the length of the

relocated high segment.

June 1972

4-8



a

?ERROR WHILE EXPANDING xxx

-277- MACRO

ABSOLUTE BREAK IS xxx Where xxx is the highest absolute
address seen over 140.

xK CORE USED Mac! * • *Message xndicates the size of the
low segment used to assemble the
source program.

?UNIVERSAL PROGRAM(S) MUST HAVE SAME OUTPUT SPECIFICATIONS AS OTHER

This error message indicates that
universal program was found which
did not have either a binary or a
listing device specified but all of
the following files had such speci-
fications. For example the sequence

*,-HJNIV
*rel } L±st«-file

is illegal. The legal sequence
would be

*rel, LIST+-UNIV
*REL,LIST<-FILE

This error message indicates that
the assembler experienced an inter-
nal error while expanding the macro
identified as xxx. Errors of this
type are extremely rare; if it oc-
curs the user should rewrite the
macro involved.

4.2.1 LOOKUP Errors

The following error messages can occur during a monitor LOOKUP,
RENAME or ENTER request on disk Tho -f^v™ ~* 4-uic4 ut:bt on aisx. The form of the error messages is:

? filename.

e

xt then one of the following
(0) PILE WAS NOT POUND or (0) ILLEGAL PILE NAME (used forenter errors only) l ror

(1) NO DIRECTORY FOR PROJECT-PROGRAMMER NUMBER
(2) PROTECTION FAILURE

(3) FILE WAS BEING MODIFIED
(4) RENAME FILE NAME ALREADY EXISTS
(5) ILLEGAL SEQUENCE OF UUOS
(6) BAD UFD OR BAD RIB

(7) NOT A SAV FILE

(10) NOT ENOUGH CORE

(11) DEVICE NOT AVAILABLE
(12) NO SUCH DEVICE

(13) NOT TWO RELOC REG. CAPABILITY
(14) m ROOM OR QUOTA EXCEEDED
(15) WRITE LOCK ERROR

Version H7 , 1fn,
4-9 June 1972



MACRO -278-

(16) NOT ENOUGH MONITOR TABLE SPACE

(17) PARTIAL ALLOCATION ONLY

(20) . BLOCK NOT FREE ON ALLOCATION

(21) CAN'T SUPERSEDE (ENTER) AN EXISTING DIRECTORY

(22) CAN'T DELETE (RENAME) A NON-EMPTY DIRECTORY

(23) SFD NOT FOUND

(24) SEARCH LIST EMPTY

(25) SFD NESTED TOO DEEPLY

(26) NO-CREATE ON FOR SPECIFIED SFD PATH

If the error code (V) is greater than 26
Q

, the error message:

?(V) LOOKUP, ENTER, OR RENAME ERROR

is printed.

4.2.2 MACRO I/O Error Messages

The following error messages are generated for error conditions

found during input or output operations with peripheral devices. The

messages are self-explanatory.

70UTPUT WRITE-LOCK ERROR DEVICE xxx
? OUTPUT DATA ERROR DEVICE xxx
70UTPUT CHECKSUM OR PARITY ERROR DEVICE xxx
70UTPUT QUOTA EXCEEDED ON DEVICE xxx
?OUTPUT BLOCK TOO LARGE DEVICE xxx
7M0NIT0R DETECTED SOFTWARE INPUT ERROR DEVICE xxx
? INPUT DATA ERROR DEVICE xxx
? INPUT CHECKSUM OR PARITY ERROR DEVICE xxx
?INPUT BLOCK TOO LARGE DEVICE xxx

Version 47 June 1972

4-10
.



-279- MACRO

Chapter 5

Relocation

The MACRO-10 assembler will create a relocatable object program.

This program may be loaded into any part of memory as a function

of what has been previously loaded. To accomplish this, the

address field of some instructions must have a relocation constant
added to it. This relocation constant, added at load time by the

PDP-10 Loader, equals the difference between the memory location
an instruction is actually loaded into and the location it is

assembled into. If a program is loaded into cells beginning at

location 1400 Q , the relocation constant k would be 1400 n .

Not all instructions must be modified by the relocation constant.

Consider the two instructions:

MOVEI 2 ,.-3
MOVEI 2,1

The first is used in address manipulation and must be modified; the

second probably should not. To accomplish the relocation, the

actual expression forming an address is evaluated and marked for

modification by the Linking Loader. Integer elements are absolute
and not modified. Point elements (.) are relocatable and are always

Version M7 j une m2
5-1



MACRO -280-

modified. * Symbolic elements may be either absolute or relo-

catable. If a symbol is defined by a direct assignment statement,

it may be relocatable or absolute depending on the expression

following the equal sign (=) . If a symbol is defined as a macro,

it is replaced by the string and the string itself is evaluated.

If it is defined as a label or a variable (#) , it is relocatable.

*

Finally, references to literals are relocatable.

*

To evaluate the relocatability of an expression, consider what

happens at load time. A constant, k, must be added to each re-

locatable element and the expression evaluated. Consider the

expression:

X - A+2*B-3*C + D

where A,B,C, and D are relocatable. Assume k is the relocation

constant. Adding this to each relocatable term we get:

X
R

= (A+K)+2*(B+K)-3*(C+K)+(D+K)

This expression may be rearranged to separate the k's, yielding:

X
R

= A+2*B-3*C+D+K

This expression is suitable for relocation since it involves the

addition of a single k. In general, if the expression can be re-

arranged to result in the addition of

0*K The expression is legal and fixed.
1*K The expression is legal and relocatable.
N*K Where n is any positive or negative integer other

than or 1, the expression is illegal.

Finally, if the expression involves k to any power other than 1,

the expression is illegal. This leads to the following conven-

tions:

a. Only two values of relocatability for a complete
expression are allowed (e.g., nK where n = or +1).

b. An element may not be divided by a relocatable element.

c. Two relocatable elements may not be multiplied together.

d. Relocatable elements may not be combined by the Boolean
operators.

1 Except under the LOC code or PHASE code which specifies absolute
addressing.
Version 47 5-2 June 1972



-281- MACRO

If any of these rules is broken, the expression is illegal and the
assembled code is flagged.

If A, C, and B are relocatable symbols, then:

A+B-C is relocatable

A-C is fixed

A+2 is relocatable

2*A-B is relocatable

2&A-B is illegal

A storage word may be relocatable in the left half as well as in
the right half. For example:

XWD A,B

Version 47 j UNE 1972

5-3





-283- MACRO

Chapter 6

Assembly Output

There are two MACRO-10 outputs, a binary program and a program
listing. The listing is controlled by the listing control pseudo-
ops, which were described in Chapter 2.

6.1 ASSEMBLY LISTING

All MACRO-10 programs begin with an implicit LIST statement.

Each page begins with a TITLE line; this line contains the program's
name, the assembler version, the time of assembly, the date of
assembly and a page number. The page number is incremented by a

Form-Feed or PAGE pseudo-op.

If the code listed requires more than one page, the basic page
number given on the title line does not change but a subpage number
is added and incremented for each additional page (e.g., 6-1, 6-2,
6-3, etc. )

.

The second line printed on each page is the SUBTITLE line. This
line contains the program filename and extensions, creation time,
creation date and any given subtitle.

Version 47 June 1972
6-1



MACRO -284-

From left to right, the columns on a listing page contains:

a. The 6-digit address of each storage word in the
binary program. These are normally sequential
location counter assignments. In the case of a

block statement, only the address of the first
word allocated is listed. An apostrophe follow-
ing the address indicates that the address is

relocatable.

b. The assembled instructions and data words shown
in one of several forms for easier reading (see

paragraph 2.6.3)

.

c. The source program statement, as written by the
programmer, followed by comments, if any.

If an error is detected during assembly of a statement, an error

code is printed on that statement's line, near the left edge of

the page. If multiple errors of the same type occur in a parti-

cular statement, the error code is printed only once; but if several

errors, each of a different type, occur in a statement, an error

code is printed for each error. The total number of errors is

printed at the end of the listing.

The program break is also printed at the end of the listing. This

is the highest relocatable location assembled, plus one. This is

the first location available for the next program or for patching.

6.2 BINARY PROGRAM OUTPUT

The assembler produces binary program output in four formats. The

choice depends on whether the program is relocatable or absolute,

and on the loading procedure to be used to load the program for

execution.

6.2.1 Relocatable Binary Programs - LINK Format

Most binary programs are output in LINK format. Like the RELOC

statement, the LINK format output is implicit and is automatically

produced for all relocatable MACRO-10 programs unless another format

(RIM, RIM10, RIM10B) is explicitly requested. The LINK format is

the only format that may be used with the Linking Loader.

The Linking Loader loads subprograms into memory, properly relocat-

ing each one and adjusting addresses to compensate for the relocation,

Version 47 June 1972

6-2



-285- MACRO

It also links external and internal symbols to provide communica-
tion between independently assembled subprograms. Finally, the
Linking Loader loads required subroutines while in Library Search
Mode

.

Data for the Linking Loader is formatted in blocks. All blocks have
an identical format. The first word of a LINK block consists of
two halves. The left half is a code for the block type, and the
right half is a count of the number of data words in the block.
The data words are grouped in sub-blocks of 18 items. Each 18-
word sub-block is preceded by a relocation word. This relocation
word consists of 18 2-bit bytes. Each byte corresponds to one wordm the sub-block, and contains relocation information regarding that
word

.

If the byte value is:

no relocation occurs

1 the right half is relocated
2 the left half is relocated
3 both halves are relocated

These relocation words are not included in the count; they always
appear before each sub-block of 18 words or less to ensure proper
relocation.

All relocatable programs may be stored in LINK format, including
programs on paper tape, DECtape, magnetic tape, punched cards,
and disks. This format is totally independent of logical divi-
sions in the input medium. It is also independent of the block
type. '

6.2.1.1 LINK Formats for the Block Types - Block Type 1 Relocatable
or Absolute Programs and Data

WORD ? A^o
1?'^1011

Sf
thS firSt data word in the blockWORD 2 A^ c^tiguous block of program or data words (18

(N, from 1 to 18, must be less than 2000,000 octal)
WORD N

Version 47
June 1972

6-3



MACRO

Block Type 2 Symbols

-286-

Consists of word pairs

1 ^T WORD Bits 0-3 code bits

1ST WORD Bits 4-35 radix 50 representation of symbol

(see below)
2ND WORD Data (value or pointer)

CODE 04: Global (internal) definition

2ND WORD Bits 0-35 value of symbol

CODE 10: Local definition
2ND WORD Bits 0-35 value of symbol

CODE 60: Chained global requests:

fN
D
D S°0RD £S ^"iVinter to first woreI

of f
|in

requiring defintion (refer to the LOADER

manual)

CODE 60: Global symbol additive request: (refer to

the LOADER manual)

Block Type 3 Load Into High Segment

When block type 3 is present in a relocatable binary program, the

Loader loads the program into the high segment if the system has

re-entrant (two-segment) capability. When used, block type 3 ap-

pears immediately after the name block (type 6).

The first word is

XWD 3,, 2

The second word is the relocation word

200000,,

The third word is

XWD HISEG BREAK,, TWOSEG ORIGIN

where twoseg origin is 400000 by default.

With the TWOSEG pseudo-op, the left half of the third word is nega-

tive On a two-segment machine, this is ignored except to set a

LOADER flag. On a one-segment machine, the difference is assumed to

be the maximum length of the high segment. A one-pass assembler

does not know this legth at the start of pass 1, therefore

June 1972
Version 47

6-4



_287-
MACR0

XWD 400000,, 400000

is used to signal two segments to a two-segment machine.

On a one-segment machine, this instruction gives the error message

TWO SEGMENTS ILLEGAL

since the LOADER does not know how much space to reserve for the

high segment.

Block Type 4 Entry Block

This block contains a list of Radix 50 symbols, each of which may

contain a or 1 in the high-order code bit. Each represents a

series of logical AND conditions. If all the globals in any series

are requested, the following program is loaded. Otherwise, all

input is ignored until the next end block. This block must be the

first block in a program..

Block Type 5 End Block

This is the last block in a program. It contains two words, the

first of which is the program break, that is, the location of the

first free register above the program. (Note: This word is relo-

catable.) It is the relocation constant for the following program

loaded. The second word is the highest absolute location seen (if

greater than 140). In a two-segment program, the two words are:

1) the high segment break followed by

2) the low segment break.

Block Type 6 Name Block

The first word of this block is the program name RADIX 50). It

must appear before any type 2 blocks. The second word, if it

appears, defines the length of common. The left half of the second

word is used to describe the compiler type that produced the binary

file, in the case of MACRO.

Version 47
JuME 1972

6-5



MACRO -288-

Block Type 7 Starting Address

The first word of this block is the starting address of the program
The starting address for a relocatable program may be relocated by
means of the relocation bits.

Block Type 10 Internal Request

Each data word is one request. The left half if the pointer to the
program. The right half is the value. Either quantity may be re-
locatable.

6.2.2 Absolute Binary Programs

Three output formats are available for absolute (non-relocatable)
binary programs. These are requested by the RIM, RIM10, and RIM10B
statements.

6.2.2.1 RIM10B Format - If a program is assembled into absolute
locations (not relocatable), a RIM10B statement following the LOC
statement at the beginning of the source program causes the as-
sembler to write out the object program in RIM10B format. This
format is designed for use with the PDP-10 hardware read-in feature.

The program is punched out during pass 2, starting at the location
specified in the LOC statement. If the first two statements in the
program are:

LOC 1000)
RIM10B )

the assembler assembles the program with absolute addresses start-
ing at 10 00, and punches out the program in RIM1QB format, also
starting at location 1000. The programmer may reset the location
counter duringassembly of his program, but only one RIM10B state-
ment is needed to punch out the entire program.

In RIM10B format (see Figures 6-1 and 6-2), the assembler punches
out the RIM10B Loader (Figure 6-2), followed by the program in 17-
word (or less) data blocks, each block separated by blank tape.
The assembler inserts an I/O transfer word (IOWD) preceding each
data block, and also inserts a 36-bit checksum following each data'
Version 47 JuNE W2

6-6



-289- macro
block as shown in Figure 6-1. The word count in the IOWD includes
only the data words in the block, and the checksum is the simple
36-bit added checksum of the IOWD and the data words.

Data blocks may contain less than 17 words. if the assembler as-
signs a non-consecutive location, the current data block is termi-
nated, and an IOWD containing the next location is inserted,
starting a new data block.

The transfer block consists of two words. The first word of the
transfer block is an instruction obtained from the END statement
(see Section 6.2.2.4) and is executed when the transfer block is
read. The second is a dummy word to stop the reader.

6.2.2.2 RiMlo Format - Binary programs in RIM10 format are abso-
lute, unblocked, and not checksummed. when the RIM10 statement
follows a LOG statement in a program, the assembler inches out
each storage word in the object program, starting at the absolute
address specified in the LOC statement.

RIM10 writes an arbitrary "paper tape". If it is in the format
below, xt can be read in by the PDP-10 Read-In-Mode hardware.

IOWD N,FIRST^

where n is the length of the program including the transfer instruc-
tion at the end, and FIRST is the first memory location to be occu-
pied. The last location must be a transfer instruction to begin
the program, such as:

JRST 4, GO)

For example, if a program with RIM10 output has its first location
at START and its last location at FINISH, the programmer may write

IOWD PINISH~START+1,START^

NOTE

in cases where the location counter is increased
!'

„

n°. b
J
n«r out*ut °ccurs (such as with BLOCK,

Version 47

LOCn^and LIT pseudo-ops) , MACRO inserts a zeroword into the binary output file for each loca-tion skipped by the location counter.

June 1972
6-7



MACRO
-290"

6.2.2.3 RIM Format - This format, which is primarily used in PDP-6

systems, consists of a series of paired words. The first word of

each pair is a paper-tape read instruction giving the core memory

address of the second word. The second word is the data word.

DATAI PTR,LOC
DATA WORD

The last pair of words is a transfer block. The first word is an

instruction obtained from the END statement (see Section 6.2.2.4)

and is executed when the transfer block is read. The second word

is a dummy word to stop the reader.

The loader that reads this format is:

LOC 20

CONO PTR,60
A: CONSO PTR,10

JRST .-1
DATAI PTR,B
CONSO PTR.10
JRST .-1

B:
JRST A

This loader is normally toggled into memory and started at loca-

tion 20.

6.2.2.4 END Statements - When the programmer wants output in either

RIM or RIM10B format, he may insert an instruction or starting ad-

dress as the first word in the two-word transfer block by writing

the instruction or address as an argument to the END statement.

The second word of the transfer block is zero. In RIM10 assemblies,

this argument is ignored.

If bits through 8 of the instruction are zero, MACRO will insert

the instruction JRST 4,0, causing a halt when executed. The END

statements

END SA^ OR END JRST SA}

will start automatically at address SA.

Version 17 JuNE 1972

6-8



-291- MACRO

Some other examples

:

1st Transfer Block Word

END@XCT 1234
END Z4,SA
END

XCT@123^
JRST 4,SA
JRST 4,0

RIM 10B

LOADER

IOWD X,, ADDR,

1st BLOCK
OF

PROGRAM DATA

IOWD X n , AODRn

n ,h BLOCK
OF

PROGRAM DATA

JRST START

BLANK TAPE (6 FRAMES)

Xi<17,o«NUMBER OF WORDS IN

1st DATA BLOCK
ADDRi-ADDRESS OF

1st DATA BLOCK

IOWD IS INCLUDED
IN CHECKSUM

BLANK TAPE (6 FRAMES)

BLANK TAPE (6 FRAMES)

TRANSFER BLOCK

Figure 6-1 General RIM10B Format

Version Kl June 1972

6-9



MACRO -292-

XWD -16*0
ST: CONO PTR*60
ST1

:

HRRI A,RD+1
RD: CONSO PTR*10

JRST
DATAI PTR* @TBL1 -RD+1 (A)
XCT TBL.1 -RD + 1 (A)
XCT TBL2-RD+1(A)

A: SOJA A,
TBL1 : CAME CKSM^ADR

ADD CKSM*1 (ADR)
SKIPL CKSM*-ADR

TBL2: JRST 4, ST
AOBJN ADR*RD

ADR: jrst ST1
CKSM=ADR+1

Figure 6-2 RIM10B Loader

Version 47 June 1972

6-10



-293- MACRO

Chapter 7
Programming Examples

This chapter contains four examples of macro programs. The first
example (Figure 7-1) presents a MACRO-10 routine for calculating
the logarithm of a complex argument. This routine begins with an
ENTRY statement identifying this library routine as CLOG (Complex
Logarithm Function) and uses three external routines, ALOG, ATAN2
and CABS.

The second example (Figure 7-2) is the universal parameter file
DEF40.MAC which is used to produce the KA-10 version of LIB40.
It contains conditional assembly switches to select either a PDP-6,
KA10 or KI10 mode. It defines the accumulator conventions and
macros which simulate the KI10 hardware operations on the KA10
processor.

I Example 3 (Figure 7-3) uses DEF40 (via the SEARCH pseudo-op) for
its accumulators and the macros for DMOVE, DMOVEM and FLADD. The
macro FLADD is expanded twice to show the effect of LALL on lines
which generate text but no binary. The effect of SALL is also
shown

.

Example 4 (Figure 7-4) shows nested macros which use IRPC. The
desired operation is to take an ASCII text string and store the
Version 47 _

n
. in_7-1 June 1972



MACRO
"294"

characters four per word, left-justified, with the character count

stored in the first nine bits of the first word.

The TEXT macro counts the string characters and invokes the CODE

macro to store the characters four per word.

The CODE macro invokes a SHIFT macro which left-justifies the last

word if it is not already left-justified. The first part of the

example shows the normal listing, then SALL is set to show what

code the macros are generating.

Version 47
JuNE 1972

7-2



-295- IWCRO

Pi
pq Ph
a <
<
Ph

C\J

t~-

Pi
Ph
a;

i m
^t LT\

m
^T Hm
•• CM
on t—
H 1

Pi
^Ph
en =£,

H 1

H.=r

i>-

^f

o
Pio o
< <
s s

S3
pq
S <
&
Cs Ph
K O
< EH •«

< pq
X h-q

pq S3 Ph
J s o
Ph S3 Eh

s o <;

o Pi O J
o pq

S3
< in

< S3 55 mH o
Ph /--s. S o
O Jx! o <n
s \ O pq

a S K >H S3 S3 S3OKB —

'

H Ph
1 H

H Eh H S3 S n
Eh H Ph < o Eh Q
O Pi Q -—Eh J pq pq
^ <U C3 OJ caj t-q Ph S3DOJ < -«- O Ph CO

Ph o <; EH >H W Ph CO S3 pq
CM i-q W ^ M Eh «aj

t— O . C3 M + C5 pq pq o
OA H pq S3 EH S3 W Ph Pi «

rH S ffi H * cm < EH pq CM

W En Ds M Hr- 13 CO S3
«> Eh O }xj {xj S3 CO H <H

co HW^ + ^pq H S3 En

K W J J CJ3 <C Eh <:

i-q < Eh O *-% Eh Ph Q O Ph *^

H CSS <H Ph Ml Ph S pq J pq < C5 Cs
c3 K O J v_^CO JOOKfn O. O
O Ph i-3 S3 W CO O J •» Pi Eh ^ i-q

J <! O ffi Ph <t! G^ ,
>h o <

o M J Eh CO II pq o Ph Pi
l-H pq <H pq K O <G

pq Eh j o sa < -—EH CO S3 S3

J En Ph Eh CO trfl H Eh H >H Ph
Eh m SHH OO CO pi O Pi Pq
H S3 O S3 ^2 C5 H (x) «sd Ph -at! <C Eh Eh

Eh CO O H O Ph S3 CO X Ph S S3 X
•«EH >H J CO di M Hd pq H W pq

S3 * CQ Eh EH i-l

Eh O H II <! pq S3 < pq

S3 Ph + Sd O pq sa
pq ><! Ml pq Eh Pi Pi B^

S CO CO pi
SHII C5 pq Q pq pq Q
O ffi O M S3 sa Si S3
O Eh Ml J ^ <C EH Eh <

SlHHHH
II II II II II

SiSiHHH
^Sl TS TSl 'Si ts

TSl 'Kl T» TSl tS
IS Si Si Si Si

Eh
S3
pq

pq S
S3 S3
hH C5
Eh Ph
S3 <J
O
Pi X!

pq
C3 t-q

O Ph

o
|xi O
pq
J Ph
Ph O
o CO
O CO

pq
o Pi
Eh Q
Q

>h <
Pi
En Eh
S3 pq
pq C3

EH
S3

Eh Eh W
S3 S3 Ml S
pq pq S3SSfnO
S3 S3 O Pi

Pi Pi pq

S3 pq
Ph Ph Eh J
O O H Ph

S3 s;
Eh En C5 O
Pi Pi< O
< < S
Ph Ph Ph

pq o
<ti <t; <d co
pq pq i-q co
Pi Pi S3 pq

o Pi
Eh Eh J Q
pq pq < P

X
Eh\
Pi >h

^->pq Ph S3
-—S3 <
Ml M J Eh
^Eh < <

S3 pq
Ph O Pi CO
co Pi <
<t; c5 eh pq
--^o h J
O S3
i-q Pi Pi <C
o pq

pq Ph & pq
EH CO Eh
<3 CO S3 <
i-q CO '

«aj J
S3 pq S3
CJ> Pi Ph O
j o < i-q

< Q ^ <t!

E-i

Pi
<:
Ph

>H
Pi
<
S3H
C3 En
< pi
s <H Ph

>H DSJH <
Ph Ph pq
O O < Pi

EH
co co pq pq
co co SS Pi

g
pq eh o
Pi En En

Q a Eh CO HQQ3MX
<H <^ Ph Pi pq

CM
^-^^-> CO O S3 c;
cjco^pq o < Q1

v-^v^o <; J Eh -^

oQ ,

c3Hoc3, <i;<i;c5, Q<[;pq<i;c3'

pq pq pq SU pq pq>>>ajn< «ii(i40<:P4fu>><ip
OOOCOXiCOWfxlCOXIx!OOPiS3

Si H Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si

Si Si H
Si H Si
SlSiSi
Si. Si Si

H Si Si Si Si
HSiSiSt-Si
Si Si
SiXSi^SiSiUD
SiSiTSlSi rH
SiTS

sussi

* *
Si 'si Si
Si HSl
Si si si

_ _ Si SiTSl
SiSiSiSiSiSiSiSi^SiSi
SiSiTSiSiSiSiSiSi'SiSi
Si Si Si
SiUDSlSiSiSiSlSiSi'Si
SirH H HSiSi'SiSi'Si'Si
tsi <a is

HSiSiSi Si Si Si

SiSn-ISlHSiVOSlSiVOSlSli-ISiVO
Si<HrHrHSiSlHSiSiHSiSiSiSlrH
is. Si Si Si Si
SirHSiSiMDSlvr>SiSlvr>TSlSlSlSit>-
SiSiSlSl'vOSiVrDSlLfSVOSlSlSlSlVO
SlCMCMCMCMSiCMSlCMCMSiSlCMCMCM

SlrH CM 0O-=r LPiVO l>-SirH CM CO^T LPvVO
SiSiSlSiSiSlSlSirHHrHrHiHH H
SiSiSiSiSiSiSlSlSlSiSiSiSiSiSi
SiSlSlSiSlSiSiSiSiSiSiSlSlSiSl
SlSiSiSiSlSlSlSiSiSlSiSlSiSiSi
SiSiSiSiSiSiSlSlSlSiSiSiSiSiSi

CJ CD-

CO o
o o

Si
Si
Si

Q Si
pq
EH CO
o H
pq
Eh w
pq < Q
Q pq pq

Pi CO
CO pq S3
Pi
o g pq
Pi < Pi
Pi Pi o
pq C5o

o
O Pi «
S3 Ph CM

Version 47

Figure 7-1 MACRO Program CLOG

June 1972

7-3



MACRO -296-

w
m
<U
Eh

i-h"

O
CM CQ

C5 CO

Oh

CM
C--

PC
(X,

<c
I on

m
in

C\Jm t>-

l

K
Ph

ro<t;
I

rH ^r

B Eh
X X
W W

E-) Eh

TSIMO r-H H TS -=T *S rH MD
ISltSirHlSirHtSllSlrHH

o
K
o o
< <
s s

CM
C5 CJ C52 COOo o o < mo
i~3 i-l i-3 Eh <C i-Aoo ctj^^moooQGf

Version 47 June 1972

7-4



-297- MACRO

UNIVERSAL DEF40 PARAMETER PILE FOR FORTRAN IV LIBRARY
SUBTTL V32(343) 23-NOV-71 /TWE

IFNDEF PDP6.<IFNDEF KA10,< IFNDEF KI10 , <KA10= =1>»
IFNDEF PDP6,<PDP6==0> ^CONDITIONAL ASSEMBLY PARAMETERS
IFNDEF KA10,<KA10==0>
IFNDEF KI10 } <KI10==0>
I.PN <PDP6!KA10!KI10-PDP6-KA10-KI10>,

<PRINTX MACHINE PARAMETERS DEFINED WRONG

>

; ACCUMULATOR ASSIGNMENTS
A=0
B=l
C = 2

D=3
E=4
F=5
G=6
H=7

Q=16 ;FOR JSA AND ARG ADDRESS FOR PUSHJ
P=17 ;FUSH DOWN POINTER

IFE KA10,<
DEFINE DOUBLE (A,B)<

A
B>

>

IFN KA10,<
DEFINE DOUBLE (A,B)<
£gl,==A& 777000,, 0>
IFL ggl. ,<ggl.==-ggi._<i000 j} 0>>
ggl,==ggl.-<033000,,0>
IFE B,<ggl.==0>
gg2,==ggl.+<<B+200>«--B>&<000777,,777777>
IFL ggl. , <gg2.==0>

A
gg2

SUPPRESS ZZl,,gg2.>
DEFINE DMOVE(AC,M)<

IFL <g M>-<@>,<
MOVE AC,M
MOVE AC+1,1+M>

IFGE <g M><@>,<
MOVE I AC+1,M

.
MOVE AC,(AC+1)
MOVE .AC+1,1(AC+1)>

>

DEFINE DMOVN(AC,M)<
DMOVE AC,M
DFN AC,AC+1>

DEFINE DMOVEM(AC,M)<
MOVEM AC,M
MOVEM AC+1,1+M

Figure 7-2 Universal Parameter File DEF40.MAC

Version WI
7 _ 5

June 1972



MACRO -298-

DEFINE FLMUL (AC,M,SKOV)<
MOVEM AC s AC+2
FMPR AC+2.1+M
JFCL (2)
FMPR AC+1,M
JFCL (2)
UFA AC+l,AC+2
JFCL
FMPL AC,M
JOV %OY
UFA AC+l,AC+2
FADL AC,AC+2

: >

DEFINE FLDIV(AC,M,jSOV)<
FDVL AC,M
JOV %OV
MOW AC+2,AC
FMPR AC+2,1+M
JFCL (2)
UFA AC+l,AC+2
FDVR AC+2,M
JFCL
FADL AC,AC+2

%QY :>

DEFINE FLADD(AC,M,*OV)<
UFA AC+1,1+M
FADL AC } M
JOV 56.0V

UFA AC+l.AC+2
FADL AC,AC+2

%0V:>

> ;END OF KA10 CONDITIONAL
IFN KI10,<
OPDEF FLADD [DFAD]
OPDEF FLMUL [DFMP]
OPDEF FLDIV [DFDV]

DEFINE DFN (A,B)< DMOVN A,A
IFN <<A+1>&17-<B» S <PRINTX "DMOVN A, A" CAN'T REPLACE "DFN A,B">
>

> ;END OF KI10 CONDITIONAL

END

Version Wl June 1972

7-6



-299- MACRO

w
>o P
g w. >H

XI «w m o
l-H* P g
PQ a • w
J3 H gO
Q w os EhW o
P W
PL| CO CCg H OH m Eh
CO Eh CO

CO
O
K
O CM
< C--

g 1

K
W (X, ^-^

g < ^—

v

,-n^ HO I Si '-N Qf GCG? +H CO LT\ ^r Of w v-^ v_y •-». ejj

fc ^ + H —W Eh H W "-^rH n n + ,—

(

o CO vs. P <tj Q? * < H < «< W ^H + ^H
en Eh « + <d « +P W » <! <rj < <t!
OJ W Eh o W

P> W W Wo>>>t>- P Eh K > W W
1 CM Eh PQ <! O > >

QC t- H D W goo g o o o
Ph 1

1 Ph

Eh CO CO Pg g P g g g

i Eh
ir\ f£

CO <H
^1- rH Eh
•• ^ CO
on
H

ôn
rH
rH
v_^ Si rH SiSi rH
D-— Si Si Si Si Si
=r SiSi siStSi

Si Si Si Si Si Sio -=r SiSt Si Si Sim •• Si Si ^a^asio on
<tj H \o\o UD rH rHg

CM
rH rH rHSvSi

|

St Si H SiSi

K sua rH Si H
(it

<
1

SiSi

Si Si

Si Si Si

rH SiSi
LO Sis* SiSiSi

CO
CM CM CM CM CM

O _ _ _ «-*-•-
K TSJ. Si H cm cn-=tO Si Si Si SiSiSi
5Tj Si sua SiSiSig O Si Si Si SiSiSi

<C Si Si Si Si Si Si

gO
Si SiSi Si SiSi

co

Eh Eh
CO CO
W W
Eh Eh

W H
<H W rH

« +

gwg g
> w wo > >goo
P g g

sits
SiSi
SiSi
SiSi
tara.

SiSi
isiia

si^
^a rH
ta*a

CM CM
ia^a
CM CM

LTS\D

^a^a
^a^a
sua
ta^a

o
H
Eh
>h
cr;

w
>
w
Eh
CO
H

LO^T ^f CM CM
SiSiHtaSi
sj.sitasi'ia
ta Si ^a ta Si
Sl'rSltaSlSt
si^asisifa

xataiafa^a^ ts.^ ta^
si si Si ^a Si

rH Si Si rH *s
SiSirH Si Si

Si H LHSi rH
oo^r \s\ cn^
rH H CM rH H

t~-Si rH CM CO
Si H H rH H
Si Si Si Si Si
Si Si Si Si Si
Si Si Si Si Si
Si Si Si Si Si

o

K
<;

H
PQ

Q
<

O

WWW cm =tfc W CM w
•»+ «rH + CM « + CM + CM •\

< h «< Si < + < rH Si < + <c
»> ta •><£! "Wis -><

rH Si rH *> H «>Si H «
+ • + <tl + <n . + <Q <ci «ci; p ct; «<c w Eh

G ^ ^ ^ (-3 Q fjq j 1-^ > K< <H Q |> < Q J<<P><Q J o =UJ Pn «aj O pq < <: i-q Ph < o Ph <u < g Eh
ft D fe b ID fe

CM
Si
Si

CO o CO

Si

LT\-^T H CM CM
Si Si CM Si Si
Si Si Si Si Si
Si Si Si Si Si
Si Si Si Si Si
si Si ^a si si

Si
Si
Si
Si
Si

Si
Si
St
Si
Si
Si

Si Si Si ta Si
Si^aSiSiia

Si
Si

Si Si Si Si Si Si

rH StTSi rH fSi

Si Si rHSiSi
Si
Si

Si rH LT\Sl H
H rH CM H rH

Si
Si
CM

^r it^ko rr-Si rH
rH H rH rH CM CM
Si Si Si Si Si -rSi

Si Si Si Si Si Si
Si Si Si Si Si Si
Si Si Si Si Si Si

.rH
CM
Si
Si
Si
Si

ro
CM
Si
Si
Si

p Si
w
B^ CO
o H
w
Eh M
W < pP w w

en co
CO PQ J3
IX
o ^g w
en < K
en K o
w

o
o

o K ws Pm CM

Version 47

Figure 7-3 Test Some Macros

June 1972

7-7



MACRO 300-

w
CJ
<
(U

OJ
C~ W

1 J
ir; CQ
P-, <
< E-h

1

i-3

O
PQ

co S
^r >H
• • COm

ISl

O^r
(r; ••

o m
< rH
g

C\J

tr-

1

cr; isi^r vo tsi-=i- H
P-I TSl IS. r-\ IS iH C\J

< IS. 151 *s is IS tS4

1 IS IS IS IS IS IS
lt\ is is is is is is

is is is is is is
CO
o
CC
o
s o
<

w g
go
CO <-\ CM

BIS IS
&h Eh ec *ais
co co =msis
w w EH • •

E-t Eh < W GfCO • •

Version 47 June 1972

7-8



•301- MACRO

PC

Eh
X

• W
EH Q

pq W
EH pq H
O • PCi *S Ph
< S o S H Eh
pc! O CO En O O PC Eh CO Ph o
< H PC CO PC M Eh CO Eh Ph PC
PC Eh W O EH H Eh P=> H h-1 o
O HEhO<

Q O Eh S
H
Q

SB Ph Hd PQ
pq

pq MlSOW gj
>H 3 < S S3 O h-1 Eh cr\ H S3
PQ O pc; O Eh O H Ph Ph hHSW

H
pc;

O et! pc; X
PC O W

o J =H PC PC W Eh
J C5 H W hi Ph

Ph > Ph Q
Q O H O

pq w JO<B ^ pd <n Q Ph Ph" s o
c5 Eh < S <: fe Ph S3 EH ^ CO Ph Ph
<C o HEn Ph H Eh O H O PC O Eh O Ph .

Ph < Eh S J O Eh Q PC <CZWD PC o
PC H PP> J H KoJQS > O Q < Q

CM < S o <; Q S3 OBSWhO f£] S3 Eh 3 Q
tr- PC cm

o t—
1

H O O Js; H ^WWKHS PC pq co pq S3
1

PC in

Ph Eh PC
<

1

ix! pu,

LO Eh 1m Eh -*- -*-

m W Ph X—

\

-—

-

-=r PC rH V H
PC

l-H-

=r EH V o CO h> •-3

H CO •—n A n A H H
i-q O <H S3 V Ml A Ph « PC Ml Ml Mi PC

^—

»

W Eh + #i Ml Si A S CO C5 Ml Ml MI o
en J EH S CO II = H PQ Ph J Ph
rH CM En PQ EH II w PQ PL, II UfelS H PL, PL, PL, J pq
H C— H D X II "-» Q t- Ix! Ml E WS Q rS r*S rS < Q^ 1 Eh CO pq S3 o O t-pq Ml + Q t- o pq Ph pq J o
r-cc Eh V « o V f~ O\Vo«0> PQ PQ
=r pm «S3 f\ O&I 4- «Mi + A < <

<: pq o ^ w O Ml Ml Mi Ml MJ A M3 >w^ A -—
' rH rH rH

O 1 a s s Ml Ml Ml Ml Eh Eh Ml MJ + + +
PC in H1SOH H II O ii m n Ph Ph Eh Ml Eh tso s; 3 s
o Ph II CM Q Ph II Ph S3 11 S3 Ph II H H PL, X Ph !>< || PL, II II II

< H w II PC o pq MI PC pi. Ml Ph M Ml PC pc ><! pq X! pq ll PC II II II

S fes. Q S H O A Q Ml M H MJ H Ml CO a co pq A Eh pq Eh 3 H 3 3 s

PC
pq^r
Eh-=t
o ••

< .=1-

PC rH

PC CM
O t—

>H PC
PQ Ph
<

PC I

pq Ln
Eh
o
<
PC
<
PCo
o

Eh <
X S
pq
Eh

pq
PC En
O X
Eh pq
CO Eh

mo-ootsi
TSilS* H ^S
H H rH ^S.
CM VX5 CM TS

H rH H TSi

H LOH tSl

ISlTSl rH ^
H H-iH IS*

H TSlrH rH
TSl H H H

ISi rH CM 00
Si tsi fsi is.

ISitS^tSl

^5 H CM en
^a TS ta is
tsj IS *s fs.

is ^S fs ts
is ^a ^s Si
isi TSi ^s 5*1

Figure 7-4 Store Text Character by Character

Version 47 June 1972

7-9



MACRO
•302-

rH rH rH <H H rH
+ + + + + +
S S S S s s
II II il II II II

II II II II II II

s s S S s s

^r LT\ \o t— Si rH
Si Si Si Si rH rH
si Si Si Si Si Si
Si Si si Si Si Si
si. Si Si Si Si Si
Si Si Si Si Si Si

Version Kl June 1972

7-10



-303- MACRO

<
PM

CM
t—

i

Ph
<

CO
H CM
H t—V i

t-Pi
=T Ph

<! H r-l H
O 1

+' + +
P4 lPi 53 53 55
O II II II

< H II II II

S fe*. 53 53 53

K
W
E-i-=r

o -=r

< ••

K ^r
<U H
K

,O CO
,. t—
tH I

PQ Pi
Ph

Pi
W I

E-i lt\

O
<
Pi
<a
ko o
En <
X S
W

W
Pi EH
O X
C/i Eh

H
Si
Si
Si
Si

Si
si
Si
Si

H
Si
S;
Si
St

«
t-D

H
w
C5
Ph

Q
O
PQ
<

V tfl A
1 ««1 Si
CO ll s-

PQ Ph II <ij

t- X Ml =.

.

' f- w to +
t— CT\

V tO A
*t0 Si

CO II c
PQ Ph II PQ

t— OS

V tO A
«tOSl

CO II £
PQ Ph II O
C-r X tO =
C— W to +

V tO A
«tC Si

OO II =
PQ Ph II O
t-Wtflt
t-WtB +
t— CT\

V tO A
»>tfl Si

CO II =
PQ Ph II PQ
t~ x to =
t- PQ to +
t>- CT\

on 4-

to to
to to

II

53 ' o3 4-

tO tO
°g J,

tO tfl

od 4-

to to to to
"^53

tO tfl bo to to to to to
II

53 II

E to
H tO

W II

Q II

O to
O MI

O
Ph
PhH

II

53 II

pH tfl

II

53 II.

Ph to
H tfl

II

53 II

Ph tfl

H tfl

53 , II

Ph tO
\-\ to

Si
Si
Si
Si

SiH
•=r

H
Si

Si

H
Si

Si
Si
Si
Si

si
H
CM
Si

Si
rH
=r
H
Si

roTs.-=r
SlSlSl
H Si H
CM Si Si
Si Si Si
H Si Si

Si

Si
rH
=r
si

H
si

Sl
Sl
Si
Si
Si

Version 47

7-11

June 1972



MACRO -304-

V til A V til A
"til -Si •> wits*

OO II = CO || =
CQ P-i II fe m p-c ii c5
c— fx| til t t-X cfl =
c— M tti + C- W M3 +
c— cr\ t— O^
oa 4. oS 4.

tfl t« Ml til

til til tfl tfl

II IIS II S II

fc til fe tilH til M t{l

vo t—
tsi ist
r-\ rH
W\ UD
ts ISI
iH H

-r LT\
isa *st
r-H rH
isi =r
tsi Si
?sl r-\

Version 47 June 1972

7-12



-305- MACRO

CM
1

H
W
C3
<
CM

CM
r—

t

pc
CM
<

1

V V V V

m
Eh

oo oo
CQ CQ

OO
CQ

CO
CQ

LA Ph t— r— D— t—
^r H

t— t—
t—
r—

^r CO 08 o3 oa 08

H V Ml Ml Ml Ml

V Ml A V Ml A V Ml A V Ml A V Ml A W « Ml Ml Ml Ml
f~N «MJ TSl "Cfl "SI «MJ Ts. *M1 TSl «MJ Tsi S oo
rn oo He oo us OO HE eo ii e 6o ii E H CQ pq W Ph

1 P3
H CM rn p i ii |T| CQ CM II H CQ CM II i-d CQ CM II W CQ Cm II J Ph C— Ph Ph Ph Ph

H l>- D-- X Ml E C— X Mi E t— X Ml E b- X Ml E l>- X MI E m t- H H H M
v_^

1 c-W tfl + l>~ W tfl H- c-- pq mi + t— W Ml + c-pq tsi + Q t- <- -<- -<- 4-

t-K r— o^ t>- C\ c-- o\ t— OA r— o\ o» en O^ o> o\ cr\

^r CM oa | o3 -f ob ^. o8 +• °a + *>M1 4-

4i
+ 4- +

< Ml MI Ml Ml tfl til tfl Ml Ml Ml M) Ml Ml A Ml Ml Ml A
O tS3 Ml Ml tfl tfl Ml M3 Ml Ml MJ Ml M3 Eh EhMIEhMIEhMIEhMIEh
PC Lf\ II II II II II W II Ph fe II Ph II Ph II Ph II Ph

o S II S II S II S II Ss; II S Ph II M H II H II IH II H II H
H Ph MJ Ph Cfl pH Ml Pm Ml Ph MJ feHttlK KiMlWMiW«iK«lW

s fcst. M Ml H Ml H Ml H Ml M Ml H V Ml CO A CO Ml CO Ml CO Ml CO Ml CO

K
pq .

En-=r
o -=r t— Sl^Sl
<U .; tSltSi rH
(£^t H iSiH
< H V£> tSilSl

W ^S.TSi'Si
O CM HtSi^S.

O-
X 1

CQ PC LT\

CM rsi

PC < H
W I ^t-

Eh LTv 1SI
O rH
<d
PC •-

< Ln
w isi

o ^s
o tsi

Eh <U - tsi

X S ^
W
Eh

W
cc; Eh
O X
Eh W
CO Eh

H
rH

r-i

H
rH
H

rH
r-{

TSi

OO mtsi^r
H HTSlH
H rH TSl H
CM CM TSlTSX

H H IS* TSt

rH rH TSlTSl

H H
H H
rH rH
O TSI
rH H
rH H

UD
TSl

TSi
TSl
TSl
TSl

TSt TSl TSl

TSl TSl TSl

TSl TSl TSl

^a- TSl TSl

rH TSl TSl

r-\ TSl TSl

^d- TSl

rH TSl

H TSl

TSl -=r

TSl H
TSl H

Version WJ June 1972

7-13



MACRO -306-

on
l

Wo
<
0-.

I

K
PLl

I

Q
<- -«- m -«--«- w

H CM
rH b-
^-'

I

c—cr;

<
O I

K LT\

O
< H
S vs.

*s
*s

is.

is.

is.

-r
rH
rH

ts
is

PC
w
E-i^3-

o^r
<c ..

K-^r
< rH
ffiO CM

C--
>H 1 is
CQ K rH

p.H IS
CC < is
W 1 is
Eh LT\ Q *sO W
< Eh CO
K O H
< W
m Eh wo W < Qo Q w W
Eh < K COX S CO CQ D
W cr;

Eh o S w
PC < ix

W PC K oK Eh w o oO X o
En W o K «
CO Eh s 0-. CM

Version 47

7-14
June 1972



-307- MACRO

Appendix A
Op Codes, Pseudo-Ops,
and Monitor I/O Commands

This appendix contains a complete list of assembler defined operators
including machine instruction mnemonic codes, assembler pseudo-ops,
monitor programmed operators, and FORTRAN programmed operators. A
programmed operator, or unimplemented user operation code is called
a UUO.

A.l ASSEMBLER PSEUDO-OPS AND MONITOR COMMANDS

The notes specify which pseudo-ops generate data, and which do not.
Pseudo-ops that generate data may be used within literals, and in
address operand fields.

The initial values given by MACRO-10 to I/O instructions and FORTRAN
UUO's for which the octal op code is not shown, are given in the notes
and are useful in checking listings.

^AY
;on

SeUd°"°P ' 9enerates dat* CALLI, 047, monitor UUOARG, 320, no-op (same as JUMP) CLOSE, 070, monitor UUO
'

ASCII, pseudo-op, generates data COMMENT, no data generatedASCIZ, pseudo-op, generates data DATA, 020, FORTRAN UUO
ASUPPRESS, pseudo-op, no data generated DEC, pseudo-op, generates dataBLOCK, pseudo-op, no data generated DEC, 033, FORTRAN UUO

™f' n!n
Ud°~°?: generates data DEFINE, pseudo-op, no data generatedCALL, 040, momtor UUO DEPHASE , pseudo_op , no data generated

Version V
A,x June 1972



MACRO
ENC, 034, FORTRAN UUO

END, pseudo-op , no data generated

ENTER, 077, monitor UUO

ENTRY, pseudo-op, no data generated

EXP, pseudo-op, generates data

EXTERN, pseudo-op, no data generated

FIN., 021, FORTRAN UUO

GETSTS, 062, monitor UUO

HISEG, pseudo-op, no data generated

IF1, conditional pseudo-op

IF2, conditional pseudo-op
IFB, conditional pseudo-op

IFDEF,, conditional pseudo-op

IFDIF , conditional pseudo-op

IFE, conditional pseudo-op
IFG, conditional pseudo-op
IFGE, conditional pseudo-op

IFIDN, conditional pseudo-op

IFL, conditional pseudo-op

IFLE, conditional pseudo-op

IFN, conditional pseudo-op

IFNB, conditional pseudo-op

IFNDEF, conditional pseudo-op

IN, 056, monitor UUO
IN., 016, FORTRAN UUO

INBUF, 064, monitor UUO

IN., 026, FORTRAN UUO

INIT, 041, monitor UUO

INPUT, 066, monitor UUO

INTEGER, pseudo-op, generates data

INTERN, pseudo-op, no data generated

IOWD, pseudo-op, generates data

IRP, pseudo-op, no data generated

IRPC, pseudo-op, no data generated

LALL, pseudo-op, no data generated

LIST, pseudo-op, no data generated

LIT, pseudo-op, generates data

LOC, pseudo-op, no data generated

LOOKUP, 076, monitor UUO

MLOFF, pseudo-op, no data generated

MLON, pseudo-op, no data qenerated

MTAPE, 072, monitor UUO

MTOP., 024, FORTRAN UUO

NLI. f 031, FORTRAN UUO

NL0.„ 032, FORTRAN UUO

NOSYM, pseudo-op, no data generated

OCT, pseudo-op, generates data

OPDEF, pseudo-op, no data generated

OPEN, 050, monitor UUO

OUT, 057, monitor UUO

OUT., 017, FORTRAN UUO

OUTBUF, 065, monitor UUO

OUTF., 027, FORTRAN UUO

OUTPUT, 067, monitor UUO

PAGE, pseudo-op, no data generated

PASS 2, pseudo-op, no data generated

PHASE, pseudo-op, no data generated

POINT, pseudo-op, generates data

PRINTX, pseudo-op, no data generated

PURGE, pseudo-op, no data generated

RADIX, pseudo-op, no data generated

RADIX50, pseudo-op, generates data

RELEAS, 071, monitor UUO

Version 47

-308-

RELOC, pseudo-op, no data generated

REMARK, pseudo-op, no data generated

RENAME, 055, monitor UUO

REPEAT, pseudo-op, no data generated

RERED., 030, FORTRAN UUO

RESET., 015, FORTRAN UUO

RIM, pseudo-op, no data generated

RIM10, pseudo-op, no data generated

RIM10B, pseudo-op, no data generated

RTB., 022, FORTRAN UUO

SEARCH, pseudorop, no data generated

SETSTS, 060, monitor UUO

SIXBIT, pseudo-op, generates data

SLIST., 025, FORTRAN UUO

SQUOZE, same as RADIX50

STATO, 061, monitor UUO

STATUS, 062, monitor UUO

STATZ, 063, monitor UUO

STOPI, pseudo-op, no data generated

SUBTTL, pseudo-op, no data generated

SUPPRESS, pseudo-op, no data generated

SYN, pseudo-op, no data generated

TAPE, pseudo-op, no data generated

TITLE, pseudo-op, no data generated

TTCALL, 051, monitor UUO

TWOSEG, pseudo-op, no data generated

UGETF, 073, monitor UUO

UJEN, 100, monitor UUO

UNIVERSAL, pseudo-op, no data generated

USETI, 074, monitor UUO

USETO, 075, monitor UUO

VAR, pseudo-op, generates data

WTB., 023, FORTRAN UUO

XALL, pseudo-op, no data generated

XLIST, pseudo-op, no data generated

XWD, pseudo-op, generates data

Z, pseudo-op, generates data

.CREF, pseudo-op, no data generated

.XCREF, pseudo-op, no data generated

.HWFRMT, pseudo-op, no data generated

.MFRMT, pseudo-op, no data generated

June 1972

7A-2



-309-
MACRO

A.2 MACHINE MNEMONICS AND OCTAL CODES

The following are machine mnemonics and corresponding octal codes:

ADD 270
ADDB 273
ADDI 271

ADDM 272
AND 404

ANDB 407
ANDCA 410
ANDCAB 413
ANDCAI 411

ANDCAM 412

ANDCB
ANDCBB
ANDCB I

ANDCBM
ANDCM

440

443

441

442

420

ANDCMB 423
ANDCM I 421

ANDCMM 422
AND I 405
ANDM 406

AOBJN 253
AOBJP 252
AOJ 340
AOJA 344
AOJE 342

AOJG 347
AOJGE 345
AOJL 341

AOJLE 343
AOJN 346

AOS
AOSA
AOSE
AOSG
AOSGE

AOSL
AOSLE
AOSN
ASH
ASHC

BLKI

BLKO
BLT
CAI

CAIA

CAIE

CAIG
CAIGE
CAIL

CAILE

CAIN
CAM
CAMA
CAME
CAMG

350

354

352

357

355

351

353

356

240

244

7-00

7-10

251

300

304

302

307

305

301

303

306

310

314

312

317

CAMGE 315
CAML 311
CAMLE 313
CAMN 316
CLEAR 400

CLEARB
CLEARI
CLEARM
CON I .

CONO

CONSO
CONSZ
DATAI
DATAO
DFN

DIV
DIVB
DIVI

DIVM
DPB

EQV
EQVB
EQV I

EQVM
EXCH

FAD
FADB
FADL
FADM
FADR

FADRB
FADR I

FADRM
FDV
FDVB

FDVL
FD.VM

FDVR
FDVRB
FDVRI

FDVRM
FMP
FMPB
FMPL
FMPM

FMPR
FMPRB
FMPRI
FMPRM
FSB

FSBB
FSBL
FSBM
FSBR
FSBRB

403

401

402

7-24

7-20

7-34

7-30

7-04

7-14

131

234

237

235

236

137

444

447

445

446

250

140

143

141

142

144

147

145

146

170

173

171

172

174

177

175

176

160

163

161

162

164

167

165

166

150

153

151

152

154

157

FSBRI

FSBRM
FSC

HALT
HLL

HLLE
HLLEI

HLLEM
HLLES
HLLI

HLLM
HLLO
HLLOI

HLLOM
HLLOS

HLLS
HLLZ
HLLZI

HLLZM
HLLZS

155

156

132

254-4,

500

530

531

532

533

501

502

520

521

522

523

503

510

511

512

513

HLR 544

HLRE 574
HLREI 576
HLREM 576
HLRES 577

HLRI

HLRM
HLRO
HLROI
HLROM

545

546

564

565

566

HLROS 567
HLRS 547
HLRZ 554
HLRZI 555
HLRZM 556

HLRZS 557
HRL 504
HRLE 534
HRLEI 536
HRLEM 536

HRLES
HRLI

HRLM
HRLO
HRLOI

537

505

506

524

525

HRLOM 526
HRLOS 527
HRLS 507
HRLZ 514
HRLZI 515

HRREM
HRRES
HRRI
HRRM
HRRO

572

573

541

542

560

HRROI 561

HRROM 562

HRROS 563

HRRS 543
HRRZ 550

HRRZI 551

HRRZM 552
HRRZS 553
IBP 133

IDIV 230

I DIVB 233
IDIVI 231

IDIVM 232
I DPB 136

ILDB ' 134

IMUL 220
IMULB 223
IMULI 221

IMULM 222
IOR 434

IORB

IDRI

IORM
JCRY
JCRY0

JCRY1
JEN

JFCL
JFFO
JFOV

JOV
JRA
JRST
JRSTF
JSA

437

435

436

255-6,

255-4,

255-2,

254-12,

255

243

255-1,

255-10,

267

254

254-2,

266

JSP 265
JSR 264
JUMP 320
JUMPA 324
JUMPE 322

JUMPG 327
JUMPGE 325
JUMPL 321

JUMPLE 323
JUMPN 326

MOVEM
MOVES
MOVM
MOVMI
MOVMM

MOVMS
MOVN
MOVNI
MOVNM
MOVNS

MOVS
MOVSI
MOVSM
MOVSS
MUL

HRLZM
HRLZS
HRR
HRRE
HRREI

516

517

540

570

571

LDB
LSH

LSHC
MOVE
MOVEI

135

242

246

200

201

ORCA
ORCAB
ORCAI
ORCAM
ORCB

ORCBB
ORCBI
ORCBM
ORCM
ORCMB

ORCMI
ORCMM
ORI

QRM
POP

POPJ

PUSH.

PUSHJ
ROT
ROTC

RSW
SETA
SETAB
SETAI

SETAM

SETCA
SETCAB
SETCAI

SETCAM
SETCM

SETCMB
SETCM I

SETCM

M

SETM
SETMB

202

203

214

215

216

217

210

211

212

213

204

205

206

207

224

MULB 227
MULI 225
MULM 226
OR 434
ORB 437

454

457

455

456

470

473

471

472

464

467

465

466

435

436

262

263

261

260

241

245

7-04

424

427

425

426

450

453

451

452

460

463

461

462

414

417

SETMI 415
SETMM 416
SETO 474
SETOB 477

SETOI 475

SETOM 476
SETZ 400
SETZB 403
SETZI 401

SETZM 402

SKIP 330
SKIPA 334

SKIPE 332

SKIPG 337
SKIPGE 335

SKIPL

SKIPLE

SKIPN

SOJ

SOJA

SOJE

SOJG
SOJGE
SOJL
SOJLE

SOJN
SOS
SOSA
SOSE
SOSG

SOSGE
SOSL
SOSLE
SOSN
SUB

SUBB
SUBI

SUBM
TDC
TDCA

TDCE
TDCN
TDN
TDNA
TONE

TDNN
TDO
TDOA
TDOE
TDON

TDZ
TDZA
TDZE
TDZN
TLC

331

333

336

360

364

362

367

365

361

363

366

370

374

372

377

375

371

373

376

274

277

275

276

650

654

652

.656

610

614

612

616

670

674

672

676

630

634

632

636

641

TLCA
TLCE
TLCN
TLN
TLNA

TRC
TRCA
TRCE
TRCN
TRN

TRNA
TRNE
TRNN
TRO
TROA

TROE
TRON
TRZ
TRZA
TRZE

TRZN
TSC
TSCA
TSCE

TSCN

TSN
TSNA
TSNE
TSNN
TSO

TSOA
TSOE
TSON
TSZ
TSZA

TSZE

TSZN
UFA
XCT
XOR

XORB
XORI
XORM

645

643

647

601

605

TLNE 603
TLNN 607
TLO 661

TLOA 665
TLOE 663

TLON 667
TLZ 621

TLZA 625
TLZE 623
TLZN 627

640

644

642

646

600

604

602

606

660

664

662

666

620

624

622

626

651

655

653

657

611

615

613

617

671

675

673

677

631

635

633

637

130

256

430

433

431

432

Version 47

A-3

June 1972





-311- MACRO

Appendix B
Summary of Pseudo-Ops

B.l PSEUDO-OPS

A list of pseudo-

ARRAY

ASCII

ASCIZ

ASUPPRESS

BLOCK

BYTE

COMMENT

DEC

DEFINE

DEPHASE

END

ENTRY

EXP

EXTERN
Version 47

ops and their functions follows:

Reserve multiple words of storage.

Seven-bit ASCII test

Seven-bit ASCII test, with null character guaranteed
at end

Turns on suppress bit for all symbols

Reserves block of storage cells

Input bytes of length 1-36 bits

No binary produced; same as seven-bit ASCII

Input decimal numbers

Defines macro

Terminates PHASE relocation mode

Last statement of the program

Entry point for subroutine library

Input expressions

Identifies external symbols

June 1972
B-l



MACRO

HISEG

INTEGER

INTERN

IOWD

IRP

IRPC

LALL

LIST

LIT

LOC

MLOFP

MLON

NOSYM

OCT

OPDEF

PAGE

PASS2

PHASE

POINT

PRGEND

PRINTX

PURGE

RADIX

RADIX50

RELOC

REMARK

REPEAT

RIM

RIM10

RIM10B

Version 47

-312-

Load into high segment

Reserve one word of storage per argument

Define internal symbols

Set up I/O transfer word

Indefinite repeat of macro arguments

Indefinite repeat of one character

List all; expanded listing of macros

List in normal mode

Assemble literals

Assign absolute addresses

Turn off multiline literal feature

Turn on multiline literal feature

Suppress symbol table listing

Input octal numbers

Defines user-created operator; generates only one
word

Start a new listing page

Terminates pass 1, remaining statement are pro-
cessed pass 2 only

Following coding relocated at execution time

Sets up byte pointer word

Allows multiprogram assemblies, end one such program

Output on terminal or listing device the rest of the
line

Remove symbol from table

Sets prevailing radix to 2-10

Compresses 36-bit words, primarily for system use

Implied first statement; assigns relocatable addresses

Comments only statement

Repeat n times

Prepare output in RIM paper-tape format

Absolute, unblocked, output format; no checksums

Absolute, blocked, checksummed output format

June 1972

B-2



-313- MACRO

SALL Suppress listing of macros; lists only call and
binary generated

SEARCH Opens symbol tables of universal program

SIXBIT Input text in compressed 6-bit ASCII

SQUOZE Same as RADIX 50 above

STOPI Stop indefinite repeat of macro arguments

SUBTTL Subtitle on listing

SUPPRESS Turns on suppress bit for specified symbols

SYN Make synonymous

TAPE , Stop processing the current file

TITLE Title on listing and to DDT

TWOSEG Assembles and loads two segment programs

UNIVERSAL Makes symbol table available to other programs

VAR Assemble variables suffixed with # or ARRAY or
INTEGER

XALL Stop expanded listing, resume normal list mode

XLIST Stop listing

XPURGE Purges local symbols on pass 2

XWD Input two 18-bit half words

Z Input zero word

.CREF Resume outout pf CREF information

.XCREF Stop output of CREF information

.HWPRMT List binary in half word format (old)

.MPRMT List binary in multi- format (new)

B.l.l Conditional Assembly Statements

These conditional assembly statements in the first column are as-

sembled if the conditions in the second column exist.

IF1 Encountered during pass 1

IF2 Encountered during pass 2

IFB Blank

IFDEF Defined

.

IFDIF Different

IFE Zero

Version 47 June 1972

B-3



MACRO -314-

IFG Positive

IFGE Zero, or positive

IPIDN Identical

IPL Negative

IFLE Zero, or negative

IFN Non-zero

IFNB Not blank

IFNDEF Not defined

Version 47 j UNE 1972

B-4



-315- MACRO

Appendix C
Summary of Character
Interpretations

The characters listed below have special meaning in the contexts
indicated. These interpretations do not apply when these characters
appear in text strings, or in comments.

Character Meaning Example

: Colon. Immediately follows all LABEL: Z
labels.

Semicolon. Precedes all comments. ;THIS IS A COMMENT

Point. Has current value of the JRST .+5 JUMP FORWARD
location counter or indicates float- FIVE LOCATIONS
ing point number. ]_.0

/ Comma. General operand or argument DEC 10,5,6
delimiter. EXP A+B,C-D

Accumulator field delimiter. MOVEI 1,TAG

References accumulator 0. The MOVEI ,TAG
comma is optional.

Delimits macro arguments. MACRO (A,B,C)

1 Inclusive OR *)
.

I Logical Operators
& AND )

Version 47 j UNE 1972

c-i



MACRO

Character

-316-

Meaning Example

1st charac-
ter of text
string

B

( )

[ ]

Arith-
metic
Operators

Multiplication

Division

Add (+A outputs the value of A)'

Subtract

In ASCII, ASCIZ and SIXBIT comment ASCII/STRING/;
text strings, the first non-blank
character is the delimiter.

Follows number to be shifted and
precedes binary shift count.

Exponent. Precedes decimal ex-
ponent in floating-point numbers.

Parentheses. Enclose index fields.

Enclose the byte size in
BYTE statements.

Enclose the dummy argument
string in macro DEFINE
statements.

Angle brackets. In an expression,
enclose a numeric quantity.

In conditional assembly state-
ments, contain a single argu-
ment, and the conditional
coding

.

In REPEAT statements, con-
tain coding to be repeated.

In macros, enclose the macro
definition.

7B2

F22.1E5 EXPONENT
IS 5.

ADD AC1,X (7)
MOVEI A, (SIXBIT/ABC/)

BYTE (6) 8, 8, 7

DEFINE MAC(A,B,C)

<A-B+500/C>

IP1, MOVE AC0, TAX

REPEAT 3, <SUB 17, TAG>

DEFINE PUNCH
DATAO PTP, PUNBUF (4)

Square brackets. Delimit literals. ADD 5, [MOVEI 3, TAX]

In OPDEF statement, contain
new operator; in ARRAY the size.

Equal sign. Direct assignment.

Equal sign. Direct assignment but
no output to DDT.

Equal sign and colon. Direct as-
signment but automatically made
internal.

Colon and exclamation point. Direct
assignment of label, no output to
DDT, and automatically made internal.

OPDEF CAL [MOVE]
ARRAY FOO[212]

SYM=6
SYM-A+B*D

SYM==6

FLAG=:200 '

LABEL :

!

Version 47 June 1972

C-2



-317-
Character Meaning

==: Equal sign and colon. Direct assign-
ment, no output to DDT, and automat-
ically made internal.

::1 Double colon and exclamation point.
Direct assignment of label, no out-
put to DDT, and automatically tnade
internal.

"..." Quotation marks enclose 7-bit ASCII
text, right justified, from one to
five characters.

1

. .
.

' Single quotation marks enclose 6-
bit ASCII text, right justified,
from one to six characters.

# Number sign, Defines a symbol used
as a tag. Variable.

## Alternate method of generating ex-
ternal symbols.

1 Apostrophe or single quote. Concate-
nation character, used within macro
definitions or SIXBIT data.

^ Reverse slash. If used as the
first character of an argument in
a macro call, the value of the fol-
lowing symbol is converted to an
ASCII symbol in the current radix.

Control left arrow,
ation.

Line continu-

Left arrow. N M shift N left (or
right) M bit positions,

Indicates indirect addressing.
Causes the indirect bit in an instruc-
tion to be set.

MACRO

Example

LOOP==:32

NAME : :

!

"ABODE"

'TABLES

ADD 3,TAG#

MOVE 0,JOBREL##

DEFINE MAC (A,B,C);
<JUMP'A B, C>

'SIXBIT'

MAC \ A IP A=500, THIS
GENERATES THREE 7-BIT
ASCII CHARACTERS,
ASCII/500/

100«-3=1000
100^3=10

MOV AC,@ADDR

Version 47 June 1972

C-3





-319- MACRO

Appendix D
Storage Allocation

MACRO allocates storage in two directions:

1) the symbol table (user symbols and macro names)grows downward from top of the low segment (.JBREL)

'J

3
™!!.' liter^ ls

'
etc, grow upward from free space

2)

(.JBFF)

.

All entries in the symbol table are two words long. The first word
is the symbol name in SIXBIT. The second word is flags in left
half and either value or pointer in right half.

Most symbols have a value less than 18 bits and so can be repre-
sented by just the two words in the symbol table. Symbols with
a 36-bit value (e.g., -1) have the value stored in a 1 word in
free storage and a pointer to this value stored in the symbol table.

External symbols have two words in free storage, the first is the
value (i.e., the last reference in a chain of references to the
symbol). The second is the sixbit name of the symbol. This is
so that additive global fixups can be output.

Version 17
June 1972

D-l



MACRO
_320~

Opdefs tend to have 36-bit values and are stored like other 36-

bit value symbols.

Macro names are stored in the symbol table, the value is a pointer

to the stored text string.

The text string is stored in four (assembly parameter) word blocks

which have the general form

1) link to next block, [0 if last] ,, 2 characters

2) 5 characters

3) 5 characters

4) 5 characters

However, the first such block is special

1) link to next block ,, link to last block
,>+q+rp ferpnce

2 pointer to default arg; ,, <number or args expected>*9+reference

3) 5 characters count

4) 5 characters

The number of args expected is the number of arguments in the define

statement.

The reference count is incremented when the macro is called and

decremented when exiting from the macro. When this count goes to

zero the macro is removed from free space.

The actual arguments to a macro are stored in the same linked block,

but are not in the symbol table. Repeats (2 or more times) are also

stored the same way. The text blocks are removed when the macro

exits or the repeat exits since the reference count has gone to

zero.

The addresses of the actual argument blocks are stored in a pushdown

stack in order of generation.

Default arguments are stored the same way except the list is in free

core. The pointer to this default arg list is stored in the left

half of the second word of the first block of the macro definition.

I

The text body is stored as is, except that dummy arguments are re-

placed by special symbols.

\i „„ in June 1972
Version 47

D-2



-321- MACRO

The ASCII character RUBOUT (177) is used to signal a special char-

acter text.

These characters are

001 ;end of macro
002 ;end of dummy symbol
003 ;end of Repeat
004 ;end of IRP or IRPC

If the character is 4<ch<77 it is illegal.

If the character is <100 then it is a dummy symbol, the value of

the character is ANDed with 37 to get the dummy symbol number and

the corresponding pointer retrieved from the stack of pointers.

If th- symbol was not specified (i.e., no pointer) then if the 40

bit is on this is to be a created symbol and one is created, other-

wise the argument is ignored.

Verbose macros can eat up a lot of storage space.

Literals are stored in four words/block per word generated (three

words if old format used)

.

Words are

form word
relocation bits
code
pointer to next

The pointer points to the word of the next block. The code is

the generated code. Relocation is either the relocation bits

or 1 per half word or external pointers if externs used.

Form word is the word used for listing, this word is not checked

when comparing literals so that different forms that produce the

same code are classed as equal.

Long literals are both slow and take up extra storage, they should

be written as subroutines or inline.

Single quotes can also be used to indicate SIXBIT words, however,

one pair of single quotes is removed by the assembler if the pair

encloses a dummy argument. For example, in the macro

Version 47 June 1972
D-3



MACRO -322-

DEPINE SXBT (A)<
MOVSI 1,"A"
MOVSI 2, "B"
>

B is not a dummy argument so it can be enclosed in single quotes,
A, however, is a dummy argument and must be enclosed in double
quotes since one pair of quotes (the inner pair) will be removed
by the assembler.

Version 47
JuNE lm

D-4



-323- MACRO

Appendix E
Text Codes

This appendix contains a summary of MACRO-10 text codes.

SIXBIT Character
ASCII

7-Bit*
SIXBIT Character

ASCII

7-Bit*
Character

ASCII

7-Bit*

00 Space 040 40 @ 100
\

140
01 1 041 41 A 101 a 141

02 ii

042 42 B 102 b 142
03 # 043 43 C 103 c 143
04 $ 044 44 D 104 d 144
05 % 045 45 E 105 e 145
06 & 046 46 F 106 f 146
07 i 047 47 G 107 9 147

10 ( 050 50 H 110 h 150
11

) 051 51 1 111 i 151

12 * 052 52 J 112
i

152
13 + 053 53 K 113 k 153
14 / 054 54 L 114 1 154
15 - 055 55 M 115 m 155
16 . 056 56 N 116 n 156
17 / 057 57 O 117 o 157

20 060 60 P 120 P 160
21 1 061 61 Q 121 q 161

22 2 062 62 R 122 r 162
23 3 063 63 S 123 s 163
24 4 064 64 T 124 t 164
25 5 065 65 U 125 u 165

26 6 066 66 V 126 V 166
27 7 067 67 W 127 w 167

30 8 070 70 X 130 X 170
31 9 071 71 Y 131 y 171

32 072 72 Z 132 z 172

33 i 073 73
[ 133

{

1

173

34 < 074 74 \ 134 174

35 = 075 75
] 135

}
175

36 > 076 76 t 136 176

37 ? 077 77 "*~ 137 Delete 177

*MACRO-10 also accepts five of the 32 control codes in 7-bit ASCII:

Horizontal Tab 01

1

Line Feed 012

Version 47

Vertical Tab

Form Feed

E-l

013

014
Carriage Return 015

June 1972





"325- MACRO

Appendix F

Radix 50 Representation

Radix 50
8
representation is used to condense 6-character symbols

into 32 bits. Each character of a symbol is subscripted in de-
scending order from left to right; i.e., the symbols are of the
form

L L L L L L
6 4 5 3 2 1

If C
n denotes the octal code for L

n , the' radix 50 representation
is generated by the following

(((((C
6
*50)+C

5
)*5JZ^C

4
)*50*C

3
)*50+C

2
)*50+C

1

where all numbers are octal.

The code numbers corresponding to the characters are:

Code (Octal) Characters
00 Null character
01-12 o_ 9
13-44 A_ z
45
46 g

The top four bits are taken from the four leftmost bits of a 6-bit
octal number (i.e.

, 04-74)

.

Version 47 p., JuNE 1972





-327- MACRO

Appendix G
Summary of Rules for

Defining and Calling Macros

G.l ASSEMBLER INTERPRETATION

MACRO-10 assembles macros by direct and immediate character substitu-
tions. When a macro call is encountered, , in any field, the character
substitution is made, the characters are processed, and the assembler
continues its scan with the character following the delimiter of the
last argument, except when it is delimited by a semicolon. Macros
can appear any number of times on a line.

G.2 CHARACTER HANDLING

G.2.1 Blanks

A macro symbol is delimited by one blank or one tab; the character
following the delimiter is the start of the argument string even if
it is also a blank or tab. Other than the first delimiter, blanks
and tabs are treated as standard characters in the argument string.

G.2. 2 Brackets

Angle brackets are only significant in the argument fields if the
first character of any field is a left angle bracket. In this case,

Version 47 JUNE 1972
G-l



MACRO -328-

no terminator or parenthesis tests are made between the left angle

bracket and its matching right bracket. The matching brackets are

removed from the string but the scan continues until a standard

delimiter is found.

G.2.3 Parentheses

Parentheses serve only to terminate an argument scan. They are

significant only when the first character following the blank or

tab delimiter is a left parenthesis. In this case, the left paren-

thesis is removed and, if it matching right parenthesis is encoun-

tered prior to the normal termination of the argument scan, it is

removed and the scan discontinued.

G.2.4 Commas

When a comma is encountered in an argument scan, it acts as the

delimiter of the current argument. If it delimits the last argument,

the character following it will be the first scanned after the sub-

sitution is processed.

G.2.5 Semicolons

When a semicolon is encountered in an argument scan, the scan is

discontinued. If an argument has not been satisfied, the remainder

is considered null. It is saved, however, and will be the first

character scanned after the substitution is made, normally acting

as a comment flag.

G.2.S Carriage Return

A carriage return, except when pre-empted by angle brackets (see

Section G.2.2), will terminate the scan similar to the semicolon.

This can be circumvented, if desired, by the control left arrow key

described elsewhere.

G.2.7 Back-Slash

If the first character of any argument is a back-slash, it must be

directly followed by a numeric term. The value of the numeric term,

is broken down into a string of ASCII digits of the current radix,

just the reverse of a fixed-point number computation. The value is

Version 47 June 1972

G-2



-329- MACRO

considered to be a 36-bit positive number having a value of to

777777 111111. Leading zeros are suppressed except in the case of 0,

in which case the result is one ASCII 0. The ASCII string is sub-

stituted and the scan continued in the normal manner (no implied

terminator)

.

The default listing mode is XALL, in which case the initial macro

call and all lines within its range that produce binary code are

listed. The pseudo-op LALL will cause all lines to be listed.

Substituted arguments are bracketed by t's by the assembler.

G . 3 CONCATENAT ION

The rule for concatenation is as follows:

For each string of apostrophes, one is removed if and only if it is

next to (either before or after) a dummy argument to that macro.

Version V June 1972

G-3





-331- MACRO

Appendix H
Operating Instructions

H.l REQUIREMENTS

The following are MACRO-10 operating requirements:

Minimum Core 7K pure plus IK impure

Additional Core Automatically requests additional core assign-
ments from the timesharing monitor as needed.

Equipment One input device (source program input) ; up to
two output devices (machine language program
output and listing output) . If the listing
output is to be used as input to the Cross
Reference (CREF) program, it must not be TTY,
DIS or LPT.

H.2 INITIALIZATION

The following are commands and corresponding indications:

^R MACRO} Loads the MACRO-10 Assembler into core.

^ The Assembler is ready to receive a command.

Version 47 June 1972

H-l



MACRO -332-

H.3 COMMANDS

H.3.1 General Command Format

MACRO-10 general commands are as follows:

objprog-dev:filenaine.ext,list-dev:filename.ext source-dev: filename. ext, source-n^

objprog-dev:

list-dev:

source-dev:

The device on which the object program is to be written.

MTAn: (magnetic tape)
DTAn: (DECtape)
PTP: (paper-tape punch)
DSK: (disk)

The device on which the assembly listing is to
be written.

MTAn: (magnetic tape)
DTAn: (DECtape)
DSK: (disk)
LPT: (line printer)
TTY: (Teletype)
PTP: (paper-tape punch)

}

Must be one
of these if
input to CREF 1

The device (s) from which the source-program
input to assembly is to be read.

MTAn: (magnetic tape)
CDR: (card reader)
DTAn: (DECtape)
DSK: (disk)
PTR: (paper-tape reader)
TTY: (Teletype)

If more than one file is to be assembled from a

magnetic tape, card reader, or paper tape reader,
dev: is followed by a comma for each file beyond
the first.

Input via the Teletype is terminated by typing
CTRL Z (+Z) to enter pass 1; the entries must
be retyped at the beginning of pass 2.

filename. ext The filename and filename extension of the object
(DSK: and DTAn: only) program file, the listing file, and the source

file(s)

.

The object program and listing devices are
separated from the source device by the left
arrow symbol.

H.3.2 Disk File Command Format

MACRO-10 disk file commands are as follows

DSK: filename. ext [proj,prog]

*If /C switch is given, but no list-dev: is specified, DSK:CREF.CRF is assumed.

Version 47 H-2 June 1972



-333- MACRO

[proj, prog] Project-programmer number assigned to the disk

area to be searched for the source file(s) if

other than the user's project-programmer number.

The installation standard protection is assigned

to any disk file specified as output.

NOTE

If object coding output is not desired (e.g., a program is

being scanned for source language errors) , objprog-dev: is

omitted. If an assembly listing is not desired, list-dev:

is omitted. If device is not specified, DSK is assumed.

Examples:

.R MACRO}
*DTA3:0BJPRG,LPT: CDR:)

END OF PASS 1 .)

~?2 ERRORS DETECTED)
PROGRAM BREAK IS 00
2K CORE USED}

2537}

Assemble one source program file from the card

reader; write the object code on DTA3 and call

the file OBJPRG; write the assembly listing on

the line printer.

The source program cards must be manually re-

fed for pass 2.

Number of source errors; size of object pro-

gram; core used by assembler.

Return to the monitor.

Assemble the next three source files located

at the present position of MTAl; write the

object program on MTA3; write the listing on

MTA2 for later printing.

*+c)

.R MACRO)
fMTA3 :

,MTA2 : MTAl
: , ,)

NO ERRORS DETECTED)
PROGRAM BREAK IS 003552)
2K CORE USED}

^_,LPT: DTA1: FILEl ,FILE2, FILES) Assemble the source files named FILEl, FILE2,

"NO ERRORS DETECTED) and FILE5 from DTAl; produce no object coding;

PROGRAM BREAK IS 001027) write the listing on the line printer.

_2K CORE USED)

«,«-DSK: FILEl. MAC[l4, 1?])
"NO ERRORS DETECTED")
PROGRAM BREAK IS 0005^4

__2K CORE USED)

*HC)

.R MACRO

Scan the source program called FILEl. MAC,

located in area 14, 12 on the disk, for source

language errors; produce no object coding or

assembly listing; print all error diagnostics

on the terminal.

Return to the monitor.

*MTA1:,TTY: TTY :)

JMP
R: AOS
G: JFCL

END)'

+0
i

0)
)

END OF PASS lQ
JMP

Version 47

Assemble a source file from the terminal; write

the object code program on MTAl and print the

assembly listing on the terminal.

Terminate input.

Reenter terminal input.

Type first statement again.

H-r3
June 1972



MACRO -334-

.MAIN MACRO 10:14

000000 000000 000001
AOS G

000001 3 50000 000002

JFCL)

000002 255000 000000

END)

20-DEC-67

JMP

R: AOS

G: JFCL)

END)

?1 ERROR DETECTED)
PROGRAM BREAK IS 000003)

.MAIN MACRO 10:14

SYMBOL TABLE)
000002 ')

R 000001')

_2K CORE USED)

20-DEC-67

PAGEl) Page heading.

PAGE2
-)

First assembled.
Reenter second.

Second assembled.

Reenter third.

Third assembled.

Reenter fourth.

Fourth assembled.

Typeout of symbol
table

.

Return to the monitor,

H.4 SWITCHES

Switches are used to specify such options as:

a. Magnetic tape control

b. Macro call expansion

c. Listing suppression

d. Pushdown list expansion

e. Cross-reference file output.

All switches are preceded by a slash (/) or enclosed in parentheses,
and usually occur prior to the left arrow (see Table H-l)

.

Version 47 June 1972

H-4



A

M

O

"335- MACRO

Table H-l

MACRO- 10 Switch Options

Switch Meaning

Advance magnetic tape reel by one file.

B Backspace magnetic tape reel by one file.

C Produce listing file in a format acceptable as input to CREF; unless the file
is named, CREF. CRF is assigned as the filename; if no extension is given,
.CRF is assigned; if no list-dev: is specified, DSK: is assumed. /C must
appear between the comma and the left-arrow.

E List macro expansions (same function as LALL pseudo-op)

.

F New format for output binary listing ( .MFRMT pseudo-op)

.

G Old format for output binary listing (.HWFRMT pseudo-op).

H Print Help text (i.e., this list of switches and explanations).

L Reinstate listing (used after list suppression by either the XLIST
pseudo-op or 5 switch)

.

List only call, no binary, in macro expansion (same .SALL pseudo-op)

.

N Suppress error printouts on the terminal.

Sets the pseudo-op MLOFF which allows literals to occupy on a single
line. This means literals may be terminated with a carriage return,
line feed instead of a right bracket.

Increase the size of the pushdown list. This switch may appear as
many times as desired (pushdown list is initially set to a size of 80
locations; each /P increases its size by 80nn ) . /P must appear on the
left of the left arrow.

10'

Q Suppress Q (questionable) error indications on the listing; Q messages
indicate assumptions made during pass 1. /Q must appear on the left
of the left-arrow.

S Suppress listing (same function as XLIST pseudo-op).

T Skip to the logical end of the magnetic tape.

W Rewind the magnetic tape.

X Suppress all macro expansions (same function as XALL pseudo-op)

.

Z Zero the DECtape directory.

NOTE

Switches A through C and T, W, X, and Z must im-
mediately follow the device or file to which the
individual switch refers.

Version 47 jUNE 1972

H-5



MACRO

Examples:

-336-

^_R MACRO)
*MTA1:,DTA3: ,/OPTR:)

END OF PASS 1 J

"?3 ERRORS DETECTED)
PROGRAM BREAK IS 00040])
.2K CORE USED)

*DTA2:ASSEMB.ONE/Z,LPT:
MTA4:/W,)

"NO ERRORS DETECTED)
PROGRAM BREAK IS 005231)
3K CORE USED)

*MTA1:/W,LPT:+-MTA3:
/W,(AA), (BB))

"?1 ERROR DETECTED)
PROGRAM BREAK IS 000655)
_2K CORE USED)

*FOO,/C FOO)
NO ERRORS DETECTED)
PROGRAM BREAK IS 000765)
2K CORE USED)

« + C)

Assemble one source file from the paper tape

reader; write the object code on MTA1; write

the assembly listing on DTA3 in cross-

reference format and call the file CREF.CRP.

The paper tape must be re- fed by the operator

for pass 2.

End-of-assembly messages.

Rewind MTA4 and assemble the first two source

files on it; write the object code on DTA2,

after zeroing the directory, and call the file

ASSEM.ONE; write the assembly listing on the

line printer.

Rewind MTAl and MTA3 and assemble files 1, 4,

and 3 (in that order) from MTA3; print the

assembly listing on the line printer; write

the object code on MTAl.

Assemble source file FOO on DSK:; write the

assembly listing on DSK in cross-reference

format calling the file CREF.CRF. Write ob-

ject code on DSK calling it FOO.REL.

Return to the monitor.

Version 47 June 1972

H-6


