Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam

“Knowledge is such a treasure which cannot be stolen”

Indian Standard

CODE OF PRACTICE FOR
DESIGN AND CONSTRUCTION OF SHALLOW FOUNDATIONS ON ROCKS

UDC 621.121 388 : 621.151.5.04 : 006.76

© Copyright 1987

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Gr 4

December 1987
Indian Standard

CODE OF PRACTICE FOR DESIGN AND CONSTRUCTION OF SHALLOW FOUNDATIONS ON ROCKS

Rock Mechanics Sectional Committee, BDC 73

Chairman
Dr Bhawani Singh

Members
Assistant Research Officer (IRI)
Director (CW & PRS)

Shri S. L. Mohanabhi (Alternate)
Director

Shri R. Narasimha Iyengar (Alternate)

Shri A. Ghosh (Alternate)
Shri M. D. Nair

Prof T. S. Nagaraj (Alternate)
Shri P. L. Nabula
Shri T. K. Natrajan

Shri P. J. Rao (Alternate)
Prof T. Ramamurthi
Dr G. V. Rao (Alternate)

Representing
University of Roorkee, Roorkee
Irrigation Department, Government of Uttar Pradesh, Roorkee
Central Water and Power Research Station, Pune

Central Soil and Materials Research Station, New Delhi
Karnataka Engineering Research Station, Krishnarajasagara

Central Mining Research Station (CSIR), Dhanbad (Bihar)
Irrigation and Power Department, Amritsar, (Punjab)
Hindustan Construction Co Ltd, Bombay
Central Building Research Institute (CSIR), Roorkee

Associated Instrument Manufacturers (India) Pvt Ltd, New Delhi
Geological Survey of India, Calcutta
Central Road Research Institute (CSIR), New Delhi

Indian Institute of Technology, New Delhi

(Continued on page 2)
Members

Dr Y. V. Ramana

Dr G. V. Rao
Research Officer (MERI)

Secretary

Director (Alternate)

Shri C. D. Thatte

Shri G. Raman,
Director (Civ Engg)

Representing

National Geophysical Research Institute (CSIR),
Hyderabad

Indian Geotechnical Society, Delhi

Irrigation Department, Government of Maharashtra,
Nasik

Central Board of Irrigation & Power, New Delhi

Irrigation Department, Government of Gujarat

Director General, BIS (Ex-officio Member)

Secretary

Shri K. M. Mathur
Joint Director (Civ Engg), BIS

Rock Slope Engineering, Foundation on Rock and Rock Mass
Improvement Subcommittee, BDC 73:4

Convener

Prof L. S. Shivastava

Members

Dr R. K. Bhandari

Shri A. Ghosh (Alternate)

Shri B. D. Baliga

Shri A. P. Bankura

Shri D. J. Ketkar (Alternate)

Shri D. G. Kadkade

Shri R. K. Jain (Alternate)

Shri T. K. Natarajan

Shri P. J. Rao (Alternate)

Dr T. Ramamurthy

Dr K. G. Sharma (Alternate)

Dr Yudhbir

University of Roorkee, Roorkee

Central Building Research Institute (CSIR),
Roorkee

Central Mining Research Institute (CSIR),
Dhanbad

Cemindia Company Limited, Bombay

Jaiprakash Associates Pvt Ltd, New Delhi

Central Road Research Institute (CSIR), New Delhi

Indian Institute of Technology, New Delhi

Indian Institute of Technology, Kanpur
(Page 6, Table 2) — Substitute '30' for '40' for value of 'qₐₛ (t/m²)' against 'Soft shale'.

(Please 6, Table 3) — Substitute the following for the existing values of 'qₐₛ (t/m²)'

600-448 440-288 280-141 135-48 45-30

(CED 48)

Reprography Unit, BIS, New Delhi, India
Indian Standard

CODE OF PRACTICE FOR DESIGN AND CONSTRUCTION OF SHALLOW FOUNDATIONS ON ROCKS

0. FOREWORD

0.1 This Indian Standard was adopted by the Bureau of Indian Standards on 30 April 1987, after the draft finalized by the Rock Mechanics Sectional Committee had been approved by the Civil Engineering Division Council.

0.2 Shallow foundation cover such type of foundation in which load transferring is through direct bearing pressure of bearing strata and is normally up to 3 m from natural ground level. Rock is usually recognised as the best foundation material. However, design engineers should be aware of the dangers associated with heterogeneity and unfavourable rock conditions since over stressing a rock foundation may result in large differential settlements or perhaps sudden failure. Therefore, a separate code covering shallow foundation on rock has been formulated.

0.3 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test of analysis, shall be rounded off in accordance with IS : 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard covers the design, construction and methods of estimating the safe bearing pressures of rocks for shallow foundations based on strength, allowable settlement and classification criteria.

2. TERMINOLOGY

2.0 For the purpose of this standard, the definitions of terms given in IS : 2809-1972† and IS : 11358-1986‡ shall apply.

*Rules for rounding off numerical values (revised).
†Glossary of terms and symbols relating to soil engineering (first revision).
‡Glossary of terms and symbols relating to rock mechanics.
3. GENERAL

3.1 The design of a foundation unit normally requires that both bearing capacity and settlement are checked. While either bearing capacity or settlement criteria may provide the limiting condition, it is normal for settlement to govern. Structural distress from settlement as evidenced by such occurrences as cracking and distortion of doors and window frames, is common experience in hills.

3.2 The calculation of bearing capacity, the distribution of stresses, and the prediction of settlement and the choice of allowable load will depend on the following factors, which should be fully considered during design:

i) *Occurrences During Excavation*
 a) Undulating rock surface below a level ground;
 b) Heterogeneity of rock mass (the bearing capacity may vary up to 10 times in apparently the same rock mass because of presence of localized fractures/shear zones/clay gauge/clay weathering/alternate hard and soft beds, etc.
 c) Solution and gas cavities;
 d) Wetting, swelling and softening of shales/phyllite and expansive clays;
 e) Bottom heave;
 f) Potential unstable conditions of the slope; and
 g) High *in situ* horizontal stresses.

ii) *Adjacent Construction Activities*
 a) Blasting (Controlled blasting techniques such as line drilling, cushion blasting and presplitting are available if it is necessary to protect the integrity of the work just outside the excavation);
 b) Excavation; and
 c) Ground water lowering (excepting in highly pervious sedimentary rock, this phenomenon is rare in most of igneous and metamorphic rocks); and
 d) Undesirable seismic response of the foundation.

iii) *Other Effects*
 a) Scour and erosion (in case of abutments and piers);
 b) Frost action;
 c) Flooding (only erodible rocks like slate and phyllite); and
 d) Undesirable seismic response of the foundation.
3.3 The permissible settlement for calculation of safe bearing pressure from plate load test should be taken as 12 mm even for large loaded areas. The low value for settlement of foundation is due to heterogeneity of rocks. In case of rigid structures like R.C.C. silos, the permissible settlement may be increased judiciously, if required.

3.4 Where site is covered partly by rocks and partly by talus deposits or soil, care should be taken to account for heterogeneity in deformability of soil and rocks. It is recommended that plate load tests be conducted on talus or soil and bearing pressure be recommended considering 12 mm settlement, as is for rock.

4. APPLICABILITY OF METHODS FOR THE DETERMINATION OF SAFE BEARING PRESSURE ON ROCK

4.1 The methods proposed in this standard for the determination of the safe bearing pressure on rock apply for various ranges of rock quality, guidance on the applicability of the proposed methods is outlined in Table 1.

<table>
<thead>
<tr>
<th>Basis of Design Method</th>
<th>Rock Quality</th>
<th>Clause No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock mass classification</td>
<td>Good rock with wide (1 m to 3 m) or very wide (>3 m) spacing of discontinuities</td>
<td>5</td>
</tr>
<tr>
<td>Core strength</td>
<td>Rock mass with closed discontinuities at moderately close (0.3 to 1 m) spacing</td>
<td>6</td>
</tr>
<tr>
<td>Pressure meter</td>
<td>Rock of low to very low strength (<500 kg/cm²): rock mass with discontinuities at close (5 to 30 cm) or very close (<5 cm) spacing, fragmented or weathered rock</td>
<td>7</td>
</tr>
<tr>
<td>Plate load test</td>
<td>Rock of very low strength (<250 kg/cm²): rock mass with discontinuities at very close spacing; fragmented or weathered rock</td>
<td>9</td>
</tr>
</tbody>
</table>

Note — Although specific approaches have been outlined for various qualities of rock masses but each approach may be used for all qualities of rock, if required.
5. ESTIMATES OF SAFE BEARING PRESSURES FROM CLASSIFICATION TABLES

5.1 Universally applicable values of safe bearing pressure cannot be given. Many factors influence the safe bearing pressure and it will frequently be controlled by settlement criteria. Nevertheless, it is often useful to estimate the safe bearing pressure for preliminary design on the basis of the classification although such values should be checked or treated with caution for final design.

5.2 The classification of rock mass for assessing safe bearing pressure is listed in Table 2.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>qDB (t/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive crystalline bedrock including granite, diorite, gneiss, trap rock</td>
<td>1000</td>
</tr>
<tr>
<td>Foliated rocks such as schist or slate in sound condition</td>
<td>400</td>
</tr>
<tr>
<td>Bedded limestone in sound condition</td>
<td>400</td>
</tr>
<tr>
<td>Sedimentary rock, including hard shales and sandstones</td>
<td>250</td>
</tr>
<tr>
<td>Soft or broken bedrock (excluding shale), and soft limestone</td>
<td>100</td>
</tr>
<tr>
<td>Soft shale</td>
<td>40</td>
</tr>
</tbody>
</table>

5.3 Rock Mass Rating (RMR) — may also be used to give net allowable pressure as per Table 3. This will ensure settlement of raft foundation up to 6 m thickness to be less than 12 mm.

5.3.1 The RMR for use in Table 3 should be the average within a depth below foundation level equal to the width of the foundation, provided the RMR is fairly uniform within the depth. If the upper part of the rock, within a depth of about one fourth of the width of foundation, is of lower quality the value of this part should be used or the inferior rock should be removed. Since the values in Table 3 are based on limiting the settlement, they should not be increased if the foundation is embedded into the rock.

<table>
<thead>
<tr>
<th>CLASSIFICATION No.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of rock</td>
<td>Very good</td>
<td>good</td>
<td>Fair</td>
<td>Poor</td>
<td>Very Poor</td>
</tr>
<tr>
<td>R M R (RMR)</td>
<td>100-81</td>
<td>80-61</td>
<td>60-41</td>
<td>40-21</td>
<td>20-0</td>
</tr>
<tr>
<td>qDB (t/m²)</td>
<td>600-448</td>
<td>440-288</td>
<td>280-151</td>
<td>145-90-58</td>
<td>55-45-40</td>
</tr>
</tbody>
</table>
6. ESTIMATE OF SAFE BEARING PRESSURE FROM THE CORE STRENGTH

6.1 Where the rock is sound the strength of the foundation rock is generally much in excess of the design requirements, provided the walls of the discontinuities are closed and they are favourably oriented (see Fig. 1) with respect to the applied forces. The investigations should, therefore, be concentrated on:

i) The identification and mapping of all discontinuities in the rock mass within the zone of influence of the foundation including the determination of the aperture (opening) of discontinuities;

ii) An evaluation of the mechanical properties of these discontinuities, frictional resistance, compressibility and strength of infilling material; and

iii) The identification and evaluation of the strength of the rock material according to relevant Indian Standard.

6.2 In case of rock mass with favourable characteristics that is, rock surface is parallel to the base of the foundation, the load has no tangential component, the rock mass has no open discontinuities). The safe bearing pressure should be estimated from the equation:

\[q_s = q_o \ N_j \]

where

\[q_s = \text{safe bearing pressure (gross)}, \]
\[q_o = \text{average uniaxial compressive strength of rock cores}, \]
\[N_j = \text{empirical coefficient depending on the spacing of discontinuities (see Table 4 and Fig. 1)} \]

\[N_j = \frac{3 + S/B_t}{10 \sqrt{1 + 300 \delta/S}} \]

\[\delta = \text{thickness of discontinuities in cm}, \]
\[S = \text{spacing of discontinuities in cm, and} \]
\[B_t = \text{footing width in cm}. \]

Note 1 — Equation includes a factor of safety of 3.

The relationship given is valid for a rock mass with a spacing of discontinuities greater than 0.3 m, aperture (opening) of discontinuities less than 10 mm (15 mm if filled with soil or rock debris) and a foundation width of greater than 0.3 m.
FIG. 1 THEORETICAL PRESSURE BULBS (10% INTENSITY)
BETWEEN STRIP LOAD ON A MEDIUM OF ROCK
MASS HAVING LOW SHEAR MODULUS
7. DETERMINATION OF SAFE BEARING PRESSURE FROM PRESSURE METER TEST

7.1 Conditions are frequently encountered where the rock is of very low strength and has discontinuities at a very close spacing, or is weathered or fragmented. It is common practice in such cases to consider the rock as a granular mass and to design the foundation on the basis of conventional soil mechanics.

7.2 The pressure meter allows for a direct determination of the strength of a rock mass including the effect of discontinuities and weathering for the design of foundations on poor rock. Using an approximate factor of safety of 3 the following equation shall be used:

\[q_{ns} = \frac{1}{3} \left[\nu D_f + K_d \left(P_L - \nu D_f \right) \right] \]

where
- \(q_{ns} \) = net safe bearing pressure (t/m²),
- \(P_L \) = limit pressure determined by the pressure meter (t/m²),
- \(\nu \) = unit weight of soil or rock (t/m³),
- \(D_f \) = depth of foundation (m).
- \(\nu D_f \) = overburden pressure (t/m³), and
- \(K_d \) = constant given in Table 5.

TABLE 4 VALUE OF \(N_j \)

<table>
<thead>
<tr>
<th>Spacing of Discontinuities (cm)</th>
<th>(N_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.4</td>
</tr>
<tr>
<td>100-300</td>
<td>0.25</td>
</tr>
<tr>
<td>30-100</td>
<td>0.1</td>
</tr>
</tbody>
</table>

TABLE 5 VALUE OF \(K_d \)

<table>
<thead>
<tr>
<th>Depth of Footing</th>
<th>(K_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load at rock surface (zero depth)</td>
<td>0.8</td>
</tr>
<tr>
<td>Radius* of foundation unit</td>
<td>2.0</td>
</tr>
<tr>
<td>4 x radius of foundation unit</td>
<td>3.6</td>
</tr>
<tr>
<td>10 x radius of foundation unit</td>
<td>5.0</td>
</tr>
<tr>
<td>*Equivalent radial dimensions.</td>
<td></td>
</tr>
</tbody>
</table>
8. DETERMINATION OF SAFE BEARING PRESSURE FROM PLATE LOAD TEST

8.1 Plate load test is still the most practical and proven test for recommending bearing pressures inspite of many limitations.

8.2 It is recommended that plate load tests be conducted on poor rocks where safe bearing pressure is suspected to be less than 100 t/m². A frequent mistake is committed in ignoring the fact that rock mass is very heterogeneous material as compared to soil. So a large number of observation pits be made at a rate of at least three per important structure and tests be conducted in the pit representing poorer rock quality. The final trimming of rock surface should be done according to IS : 7317-1974*.

8.3 Plate load test should be performed according to IS : 1888-1982† and safe pressures be obtained for settlements of plate. For a given settlement of footing, the settlement of plate is obtained by using the following formulae:

i) For massive or sound rocks

\[
\frac{S_p}{S_f} = \frac{B_p}{B_t}
\]

ii) For laminated or poor rocks

\[
\frac{S_p}{S_f} = \left[\frac{B_p}{B_t} \times \frac{(B_t + 30)}{(B_p + 30)} \right]^a
\]

where

- \(S_p = \) settlement of plate (mm),
- \(S_f = \) settlement of footing (mm),
- \(B_p = \) width of plate (cm), and
- \(B_t = \) width of footing (cm).

From pressure-settlement curve, the safe bearing pressure is read for the calculated settlement of the plate.

8.4 It is recommended that three plate load tests on different sizes of plates be conducted on the rock mass of same quality and the validity of equations be checked when desired.

8.5 From the pressure-settlement curve, if failure point can be obtained, the footing may be checked in shear failure also.

*Code of practice for uniaxial jacking test for deformation modulus of rock.
†Method of load test on soils (second revision).
9. OTHER FACTORS

9.1 For getting the allowable bearing pressure the safe bearing pressure obtained from the Table 2 or from 6, 7 or 3 should be multiplied with the correction factor(s) given below according to the geological conditions. These corrections are not applicable for the classification of RMR method given in Table 5.

9.2 Allowances should be made for submerged conditions, cavities and slopes as given below:

i) Submerged Condition Under Water Table
 a) Rock with discontinuous joints with opening less than 1 mm wide ;
 b) Rock with continuous joints with opening 1 to 5 mm wide and filled with clay; and
 c) Limestone/Dolomite deposit with major cavities filled with soil

ii) Cavities
 Major cavities inside limestone
 (core recovery less than 70 percent)

 NOTE 1 — If the solution cavities can be converted into equivalent seams, equation given in 6.2 can be used considering S/Bf as ratio of thickness of all solution cavities to the drill hole depth; and

 NOTE 2 — All rocks with solution features are highly pervious, ground water control is essential where excavation below water level. If dewatering is impracticable, under water concrete should be placed only in static water by carefully supervised techniques.

iii) Slope
 a) Fair orientation of continuous joints in the slope
 b) Unfavourable orientation of continuous joints in slope

 NOTE — Factor of safety of slope should be at least 1.20.

9.3 Safe bearing pressure should be recommended always less than the safe uniaxial compressive strength of lean concrete levelling course of the individual foundations, otherwise richer plain concrete layer should be laid to prepare smooth surface for laying R.C.C. foundations. Care should be taken to remove loosened pieces of rock from the foundation after blasting and washing and air jetting has been done so that foundation rests on practically undisturbed rock mass.
9.4 Effect of Orientation of Joints on Pressure Bulb — The orientation of the continuous joints has a profound effect on the pressure bulb. It is seen that normal stresses are transmitted mainly in two directions, parallel to the joints and perpendicular to the major joints (see Fig. 2). When the major joints are gently sloping, the extent of the pressure bulb across major joints is more than that along the joints. The converse is true for steeply inclined major joints. The practical implications are serious, for example, the elongated stress bulb may act as an imaginary impervious curtain below a concrete dam founded on stratified rocks. Further the rock mass rating will be reduced considerably in case of unfavourably orientation of continuous joints. Accordingly the bearing pressure will also be reduced.

\[N_j = \frac{3 + S/B}{10 \sqrt{1 + 300 S/B}} \]

Fig. 2 Bearing Pressure Coefficient \(N_j \)

9.5 Horizontal stiffness of foundations on rock is too small compared to its vertical stiffness. Due consideration should be given in selecting minimum size of footings.

9.6 In case rock is available in small area of the raft, Inverted-T-beam of raft foundation be allowed to rest on the rock and soil, as the confinement effect of T-beams will improve the stiffness of soil, thereby reducing the heterogeneity in deformability of soil and rock.
9.7 In case of R.C.C. strip foundation on heterogeneous soil and rock deposit, longitudinal reinforcement (along wall) should also be provided to take care possible bending moments.

9.8 For similar reasons, circumferential reinforcement should be provided in ring foundation on heterogeneous soil and rock deposit.

10. TREATMENT OF FOUNDATIONS

10.1 If at the time of actual excavation, major solution cavities have been found which have rendered the ground surface uneven, the depth of foundation should be taken to a level such that 80 percent rock area is available. It must be ensured that the raft does not over hang at any corner.

10.2 Otherwise excavate the filled up soil up to 80 percent area level and backfill it by lean concrete of required strength. However, the rock has to be excavated up to the pre-selected foundation level.

10.3 If after excavation, loose pockets of talus deposit are found out at a few places, the same should be cleaned and backfilled with lean concrete.

10.4 If very deep observation pits have been made at the site, the same should be backfilled by lean concrete up to the foundation level.

10.5 Due attention should be paid to problems of foundation on heterogeneous rocks particularly foundations on rock slopes and necessary remedial measures should be taken.

11. REPORTING OF RESULTS

These should include the following:

a) Geology of the site;

b) Table giving unaxial compressive strength, RMR, various geological parameters and unit weights;

c) Safe bearing pressure from various methods;

d) Correction factors;

e) Recommended net allowable bearing pressure; and

f) Recommended gross allowable bearing pressure.
International System of Units (SI Units)

Base Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>metre</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>Electric current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>Thermodynamic</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>candela</td>
<td>cd</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

Supplementary Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane angle</td>
<td>radian</td>
<td>rad</td>
</tr>
<tr>
<td>Solid angle</td>
<td>steradian</td>
<td>sr</td>
</tr>
</tbody>
</table>

Derived Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>newton</td>
<td>N</td>
<td>1 N = 1 kg.m/s²</td>
</tr>
<tr>
<td>Energy</td>
<td>joule</td>
<td>J</td>
<td>1 J = 1 N.m</td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>W</td>
<td>1 W = 1 J/s</td>
</tr>
<tr>
<td>Flux</td>
<td>weber</td>
<td>Wb</td>
<td>1 Wb = 1 V.s</td>
</tr>
<tr>
<td>Flux density</td>
<td>tesla</td>
<td>T</td>
<td>1 T = 1 Wb/m²</td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>Hz</td>
<td>1 Hz = 1 c/s (s⁻¹)</td>
</tr>
<tr>
<td>Electric conductance</td>
<td>siemens</td>
<td>S</td>
<td>1 S = 1 A/V</td>
</tr>
<tr>
<td>Electromotive force</td>
<td>volt</td>
<td>V</td>
<td>1 V = 1 W/A</td>
</tr>
<tr>
<td>Pressure, stress</td>
<td>pascal</td>
<td>Pa</td>
<td>1 Pa = 1 N/m²</td>
</tr>
</tbody>
</table>
HEADQUARTERS:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002
Telephones: 3 31 01 31, 3 31 13 75
Telegrams: Manaksanstha
(Common to all Offices)

REGIONAL OFFICES:
Western: Manakalaya, E9 M DC, Marol, Andheri East, BOMBAY 400093
Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola, CALCUTTA 700054
Northern: SCO 445-446, Sector 35-C, CHANDIGARH 160036
Southern: C. I. T. Campus, MADRAS 600113

BRANCH OFFICES:
'Pushpak', Nurmohamed Shaikh Marg, Khanpur, AHMADABAD 380001
'F' Block, Unity Bldg, Narasimharaja Square, BANGALORE 560002
Gangotri Complex, 5th Floor, Bhadbhada Road, T. T. Nagar, BHOPAL 462003
Plot No. 82/83, Lewis Road, BHUBANESHWAR 751002
53/5, Ward No. 29, R. G. Barua Road, 5th Byelane, GUWAHATI 781003
5-8-56C L. N. Gupta Marg (Nampally Station Road), HYDERABAD 500001
R14 Yudhister Marg, C Scheme, JAIPUR 302005
117/418 B Sarvodaya Nagar, KANPUR 208005
Fatliputra Industrial Estate, PATNA 800013
Hantex Bldg (2nd Floor), Railway Station Road, TRIVANDRUM 695001

INSPECTION OFFICES (With Sale Point):
Pushpanjali, 205A West High Court Road, Bhopalpeth Extension, NAGPUR 440010
Institution of Engineers (India) Building, 1332 Shivaji Nagar, PUNE 411005

SALES OFFICE IN BOMBAY is at Novelty Chambers, Grant Road, BOMBAY 400007
SALES OFFICE IN CALCUTTA is at 5 Chowringhee Approach, P. O. Princep Street, CALCUTTA 700072

Printed at New India Printing Press, Khurja, India